from pyspark.ml.feature import PCA, VectorAssembler from pyspark.ml.classification import LinearSVC from pyspark.ml.tuning import CrossValidator, ParamGridBuilder from pyspark.ml.evaluation import BinaryClassificationEvaluator from pyspark.sql import Row , SparkSession from pyspark import SparkConf # 1.创建spark对象 spark = SparkSession.builder.config(conf = SparkConf()).getOrCreate() # fnlwgt : final-weight 样本权重 # 2.读取数据集 dataPath = "file:///home/adult.data" data = spark.read.format("csv").option("header", "true").load(dataPath) # continuous_vars = ["age","fnlwgt","education-num","capital-gain","capital-loss","hours-per-week"] # 3.数据集预处理(将六个连续型变量提取出来并转化为特征向量) assembler = VectorAssembler(inputCols=["age", "fnlwgt", "education-num", "capital-gain", "capital-loss", "hours-per-week"], outputCol="features") data = assembler.transform(data) # 4.主成分分析 pca = PCA(k=3, inputCol="features", outputCol="pca_features") model = pca.fit(data) data = model.transform(data) # 5.划分训练集和测试集 train_data, test_data = data.randomSplit([0.8, 0.2], seed=123) # 6.构建 svm 模型 svm = LinearSVC(labelCol="label", featuresCol="pca_features") # 7.参数调优 evaluator = BinaryClassificationEvaluator(rawPredictionCol="rawPrediction", labelCol="label", metricName="areaUnderROC") paramGrid = ParamGridBuilder().addGrid(svm.regParam, [0.1, 0.01]).addGrid(svm.maxIter, [10, 100]).addGrid(pca.k, [2, 3]).build() cv = CrossValidator(estimator=svm, evaluator=evaluator, estimatorParamMaps=paramGrid, numFolds=3) cv_model = cv.fit(train_data)

时间: 2024-04-28 08:26:00 浏览: 8
这段代码是使用PySpark构建了一个支持向量机分类模型,并进行了参数调优。具体步骤如下: 1. 创建SparkSession对象; 2. 读取数据集; 3. 将六个连续型变量提取出来并转化为特征向量; 4. 进行主成分分析,将特征向量转化为PCA_features; 5. 将数据集划分为训练集和测试集; 6. 构建支持向量机分类模型; 7. 进行参数调优,通过交叉验证来选择最佳的模型参数组合。 其中,主成分分析是为了降低数据集的维度,从而减少计算量,提高模型训练和预测的效率。支持向量机是一种常用的分类算法,它通过寻找最优的分类超平面来对数据进行分类。参数调优是为了选择最佳的模型参数组合,从而提高模型的性能。这段代码中使用了交叉验证来选择最佳参数组合,交叉验证是一种常用的模型选择方法,它将数据集分为多个子集,每次使用其中一部分作为验证集,其余部分作为训练集,从而得到多组模型精度评估结果,最终选择平均精度最高的模型参数组合。
相关问题

from sklearn.decomposition import PCA

PCA是一种常用的降维方法,可以将高维数据压缩到低维空间中,并保留尽可能多的信息。在使用PCA时,需要先对数据进行标准化处理,然后调用sklearn.decomposition.PCA类进行降维。下面是一个简单的示例: ```python import numpy as np from sklearn.decomposition import PCA # 生成随机数据 X = np.random.rand(100, 10) # PCA降维 pca = PCA(n_components=2) X_pca = pca.fit_transform(X) # 查看降维后的数据 print(X_pca.shape) ``` 在这个示例中,我们生成了一个100行10列的随机数据矩阵X,然后使用PCA将其压缩到了2维空间中。最后,我们输出了降维后的数据矩阵X_pca的形状。

from sklearn.decomposition import pca

PCA (主成分分析) 是一种常用的降维算法,它可以帮助我们找到数据中的主要方向。在 sklearn 库中,我们可以使用 decomposition 模块中的 PCA 类来实现这个算法。 例如: ``` from sklearn.decomposition import PCA pca = PCA(n_components=2) pca.fit(X) ``` 在这个例子中,我们使用了 2 个主成分来降维,并在 X 上训练了 PCA 模型。

相关推荐

最新推荐

recommend-type

舵机控制中PCA9685控制芯片的运用.docx

有关舵机控制中PCA9685控制芯片的运用 文章采用I2C总线通信方式, 将PCA9685LED控制芯片应用在舵机控制中。PCA9685接收主控芯片的指令, 通过输出PWM脉冲信号的方式用以控制最多不超过16路舵机或其他输出通道, 最终...
recommend-type

PCA降维python的代码以及结果.doc

理解 “使用Numpy模拟PCA计算过程”与“使用sklearn进行PCA降维运算”两种方法;把 iris四维数据集降维,画出散点图
recommend-type

SIFT算法小结.doc

后来Y.Ke将其描述子部分用PCA代替直方图的方式,对其进行改进。 2 SIFT 主要思想 SIFT算法是一种提取局部特征的算法,在尺度空间寻找极值点,提取位置,尺度,旋转不变量。 3 SIFT算法的主要特点: a) SIFT特征是...
recommend-type

模式识别实验报告.doc

神经网络常用算法实验报告,贝叶斯分类器、Fisher判别、K近邻、PCA特征提取、C均值聚类,包含算法原理、实验代码(MATLAB)、结果展示
recommend-type

模式识别作业答案.docx

由15个样本组成的贷款申请训练数据,包括四个特征(年龄,有无工作,有无房屋,信贷情况),最后一列是类别,表示是否同意其贷款。(1)计算所有特征对上表中数据集的信息增益;...给出PCA算法的计算过程。样本降维。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。