clear;clc; [image,pt,ft]=freadenvi('CSU_MS'); image=double(image); image1=zeros(488,310,3); for i=1:3 image1(:,:,i)=reshape(image(:,i),488,310); end times=2/0.5; J1=zeros(488*times,310*times,3); for i=1:3 J1(:,:,i)=imresize(image1(:,:,i),times,'bicubic'); end J2=Normalize3(J1);%归一化 0到1 double %转换成IHS IHS=rgbtoihs(J2(:,:,3:-1:1)); %将RGB变换到IHS空间,生成的IHS图像中,1通道对应H,2通道对应S,3通道对应I %读全色图像 输出pan 0-1double类型 [ori_pan,pt,ft]=freadenvi('CSU_PAN'); pan=zeros(1952,1240); pan=reshape(ori_pan,1952,1240)/max(ori_pan); %用pan代替IHS的I分量 IHS(:,:,3)=pan; %逆IHS变换,构建融合图象 fusion=ihstorgb(IHS); figure,imshow(Normalize3(image1(:,:,3:-1:1))); title('original') figure,imshow(fusion); title('IHS'); enviwrite(fusion,1952,1240,3,'C:\Users\Administrator\Documents\MATLAB\weiboyaogan_test4\fusion');
时间: 2023-08-22 20:05:29 浏览: 182
这段代码是一个图像融合的过程,具体步骤如下:
1. 读取一个多光谱图像,存储在变量image中。这个图像有三个通道,即RGB三个通道。然后将这个图像的每个通道的像素值reshape成一个二维矩阵,存储在变量image1中。
2. 对image1进行双三次插值,将图像的大小扩大一定的倍数,存储在变量J1中。
3. 对J1进行归一化,将像素值的范围限制在0到1之间,存储在变量J2中。
4. 将J2从RGB空间转换到IHS空间,其中1通道对应色调H,2通道对应饱和度S,3通道对应亮度I,存储在变量IHS中。
5. 读取一个全色图像,存储在变量ori_pan中。将其reshape成一个二维矩阵,并将像素值除以最大值,存储在变量pan中。
6. 将IHS中的I分量替换为pan,得到融合后的IHS图像fusion。
7. 将fusion从IHS空间转换回RGB空间,存储在变量fusion中。
8. 显示原始图像和融合后的图像,并将融合后的图像保存到本地。
需要注意的是,这里使用了一些函数,例如imresize()、rgbtoihs()、ihstorgb()等,这些函数用于图像的插值、颜色空间转换等操作。同时,还使用了freadenvi()和enviwrite()函数读取和写入ENVI格式的图像数据。
相关问题
clc; clear all; img_in = imread('ILSVRC2017_test_00000237.jpg'); m = size(img_in,1); n = size(img_in,2); img_lab = rgb2lab(img_in); img_L_mean = mean(mean(img_lab(:,:,1))); img_a_mean = mean(mean(img_lab(:,:,2))); img_b_mean = mean(mean(img_lab(:,:,3))); %高斯滤波 img_R = img_in(:,:,1); img_G = img_in(:,:,2); img_B = img_in(:,:,3); w = fspecial('gaussian',[7 7]); img_R_blur = imfilter(img_R,w); img_G_blur = imfilter(img_G,w); img_B_blur = imfilter(img_B,w); img_blur = cat(3,img_R_blur,img_G_blur,img_B_blur); figure('Name','滤波'); imshow(img_blur); img_lab_blur = rgb2lab(img_blur); %计算显著图 Sd = zeros(m,n); for i = 1:m for j = 1:n Sd(i,j) = sqrt((img_L_mean - img_lab_blur(i,j,1))^2 + (img_a_mean - img_lab_blur(i,j,2))^2 + (img_b_mean - img_lab_blur(i,j,3))^2); end end %归一化 Sd_normalized = figure_normalize(Sd); imwrite(Sd_normalized,'FT_saliency.jpg'); figure; imshow(Sd_normalized); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function Out_image = figure_normalize(In_image) o_max_image = max(max(In_image)); o_min_image = min(min(In_image)); Out_image = double(In_image - o_min_image)/double(o_max_image - o_min_image); end运行该代码报错未定义函数或变量 'figure_normalize'。
这个错误是因为你使用了一个名为`figure_normalize`的函数,但是你的代码中并没有定义这个函数。你需要自己编写这个函数并将其添加到代码中。
下面是一个可能的`figure_normalize`函数的示例,你可以将其添加到你的代码中:
```
function Out_image = figure_normalize(In_image)
o_max_image = max(max(In_image));
o_min_image = min(min(In_image));
Out_image = double(In_image - o_min_image)/double(o_max_image - o_min_image);
end
```
注意:如果你使用的是 MATLAB 的版本较新,可能会有现成的函数可以实现这个功能,例如`imadjust`函数。你可以查看 MATLAB 的文档进行了解。
clc; clear all; img_in = imread('ILSVRC2017_test_00000237.jpg'); m = size(img_in,1); n = size(img_in,2); img_lab = rgb2lab(img_in); img_L_mean = mean(mean(img_lab(:,:,1))); img_a_mean = mean(mean(img_lab(:,:,2))); img_b_mean = mean(mean(img_lab(:,:,3))); %高斯滤波 img_R = img_in(:,:,1); img_G = img_in(:,:,2); img_B = img_in(:,:,3); w = fspecial('gaussian',[7 7]); img_R_blur = imfilter(img_R,w); img_G_blur = imfilter(img_G,w); img_B_blur = imfilter(img_B,w); img_blur = cat(3,img_R_blur,img_G_blur,img_B_blur); figure('Name','滤波'); imshow(img_blur); img_lab_blur = rgb2lab(img_blur); %计算显著图 Sd = zeros(m,n); for i = 1:m for j = 1:n Sd(i,j) = sqrt((img_L_mean - img_lab_blur(i,j,1))^2 + (img_a_mean - img_lab_blur(i,j,2))^2 + (img_b_mean - img_lab_blur(i,j,3))^2); end end %归一化 Sd_normalized = figure_normalize(Sd); imwrite(Sd_normalized,'FT_saliency.jpg'); figure; imshow(Sd_normalized); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function Out_image = figure_normalize(In_image) o_max_image = max(max(In_image)); o_min_image = min(min(In_image)); Out_image = double(In_image - o_min_image)/double(o_max_image - o_min_image); end解释该代码中的matlab函数或变量 'figure_normalize'。
'figure_normalize' 是一个自定义函数,用于将输入的图像进行归一化处理,使其像素值范围在 [0,1] 之间。该函数输入一个二维矩阵,输出归一化后的矩阵。其中,'o_max_image' 和 'o_min_image' 分别表示输入矩阵的最大值和最小值。函数的实现过程是将输入矩阵中的每个像素值减去最小值,然后除以最大值与最小值之差,得到归一化后的像素值。
阅读全文