import math import pandas as pd import torch from torch import nn from d2l import torch as d2l #@save class PositionWiseFFN(nn.Module): """基于位置的前馈网络""" def __init__(self, ffn_num_input, ffn_num_hiddens, ffn_num_outputs, **kwargs): super(PositionWiseFFN, self).__init__(**kwargs) self.dense1 = nn.Linear(ffn_num_input, ffn_num_hiddens) self.relu = nn.ReLU() self.dense2 = nn.Linear(ffn_num_hiddens, ffn_num_outputs) def forward(self, X): return self.dense2(self.relu(self.dense1(X))) ffn = PositionWiseFFN(4, 4, 8) ffn.eval() ffn(torch.ones((2, 3, 4)))[0] tensor([[ 0.3407, -0.0869, -0.3967, 0.7588, 0.3862, 0.2616, 0.1842, -0.0328], [ 0.3407, -0.0869, -0.3967, 0.7588, 0.3862, 0.2616, 0.1842, -0.0328], [ 0.3407, -0.0869, -0.3967, 0.7588, 0.3862, 0.2616, 0.1842, -0.0328]], grad_fn=<SelectBackward0>)
时间: 2024-04-14 15:31:24 浏览: 99
这段代码定义了一个基于位置的前馈网络(PositionWiseFFN)的类。该网络包含两个线性层和一个ReLU激活函数。在前向传播中,输入X通过第一个线性层和ReLU激活函数得到隐藏层表示,然后再经过第二个线性层得到输出。
在代码的最后,创建了一个PositionWiseFFN的实例ffn,并对其进行了评估(eval())。然后,将一个大小为(2, 3, 4)的张量输入到ffn中,并打印出前向传播的结果。
结果是一个大小为(2, 8)的张量,每个元素都是一个实数。这个结果表示了输入张量经过前馈网络后得到的输出表示。
相关问题
import numpy as np import matplotlib.pyplot as plt import pandas as pd import torch import torch.nn as nn from setuptools.sandbox import save_path from sklearn.preprocessing import StandardScaler, MinMaxScaler from torch.utils.data import TensorDataset from tqdm import tqdm
这段代码是在导入一些常用的 Python 库和模块,包括:
- numpy:用于科学计算的 Python 库,提供了高性能的多维数组(ndarray)对象和相关的计算功能;
- matplotlib:用于绘制图表和数据可视化的 Python 库;
- pandas:用于数据处理和分析的 Python 库,提供了高性能、易用的数据结构和数据分析工具;
- torch:PyTorch 深度学习框架的 Python 接口,提供了张量(tensor)计算和自动求导功能;
- torch.nn:PyTorch 深度学习框架的神经网络模块,提供了常用的神经网络层和模型;
- StandardScaler 和 MinMaxScaler:用于数据标准化和归一化的类;
- TensorDataset:用于封装张量数据集的类;
- tqdm:用于实现进度条的 Python 模块。
这些库和模块在深度学习领域经常被使用,可以方便地进行数据处理、模型构建和训练等任务。
import torch import torch.nn as nn import numpy as np from torch.utils.data import DataLoader, TensorDataset import pandas as pd
你好!这段代码看起来是在导入 PyTorch 和 NumPy 库,以及一些需要使用的模块。其中:
- `import torch` 导入 PyTorch 库
- `import torch.nn as nn` 导入 PyTorch 中的神经网络模块
- `import numpy as np` 导入 NumPy 库,并将其命名为 np
- `from torch.utils.data import DataLoader, TensorDataset` 导入 PyTorch 的数据加载器和数据集类型
- `import pandas as pd` 导入 Pandas 库,并将其命名为 pd
这里的代码仅仅是导入了需要使用的模块,没有具体的功能实现。如果您有任何其他问题,请随时提出。
阅读全文