import math import pandas as pd import torch from torch import nn from d2l import torch as d2l class TransformerEncoder(d2l.Encoder): """Transformer编码器""" def __init__(self, vocab_size, key_size, query_size, value_size, num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens, num_heads, num_layers, dropout, use_bias=False, **kwargs): super(TransformerEncoder, self).__init__(**kwargs) self.num_hiddens = num_hiddens self.embedding = nn.Embedding(vocab_size, num_hiddens) self.pos_encoding = d2l.PositionalEncoding(num_hiddens, dropout) self.blks = nn.Sequential() for i in range(num_layers): self.blks.add_module("block"+str(i), EncoderBlock(key_size, query_size, value_size, num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens, num_heads, dropout, use_bias)) def forward(self, X, valid_lens, *args): # 因为位置编码值在-1和1之间, # 因此嵌入值乘以嵌入维度的平方根进行缩放, # 然后再与位置编码相加。 X = self.pos_encoding(self.embedding(X) * math.sqrt(self.num_hiddens)) self.attention_weights = [None] * len(self.blks) for i, blk in enumerate(self.blks): X = blk(X, valid_lens) self.attention_weights[ i] = blk.attention.attention.attention_weights return X X = torch.ones((2, 100, 24)) valid_lens = torch.tensor([3, 2]) encoder_blk = EncoderBlock(24, 24, 24, 24, [100, 24], 24, 48, 8, 0.5) encoder_blk.eval() encoder_blk(X, valid_lens).shape torch.Size([2, 100, 24])

时间: 2024-04-15 11:26:26 浏览: 17
这段代码定义了一个Transformer编码器(TransformerEncoder)的类,它继承自d2l.Encoder。该编码器包含了嵌入层(Embedding)、位置编码层(PositionalEncoding)和多个EncoderBlock组成的序列。 在初始化方法中,首先创建了一个Embedding实例self.embedding,用于将输入的词索引映射为词向量。然后创建了一个PositionalEncoding实例self.pos_encoding,用于对词向量进行位置编码。接下来创建了一个包含多个EncoderBlock的序列self.blks,每个EncoderBlock具有指定的参数。 在前向传播方法中,首先将输入张量X通过嵌入层和位置编码层进行处理。嵌入层将词索引转换为词向量,并与位置编码相加。然后,依次对序列中的每个EncoderBlock进行前向传播,并记录每个Attention层的注意力权重。最后返回处理后的张量X和注意力权重列表。 在代码的最后,创建了一个大小为(2, 100, 24)的张量X和有效长度valid_lens,表示输入和有效长度。然后创建了一个EncoderBlock的实例encoder_blk,并对其进行了评估(eval())。将张量X和有效长度valid_lens输入到encoder_blk中,并打印出输出张量的形状。 结果是一个大小为(2, 100, 24)的张量,表示经过Transformer编码器处理后的输出张量的形状与输入张量相同。
相关问题

import math import pandas as pd import torch from torch import nn from d2l import torch as d2l class EncoderBlock(nn.Module): """Transformer编码器块""" def __init__(self, key_size, query_size, value_size, num_hiddens,norm_shape, ffn_num_input, ffn_ num_hiddens, num_heads,dropout, use_bias=False, **kwargs): super(EncoderBlock, self).__init__(**kwargs) self.attention = d2l.MultiHeadAttention( key_size, query_size, value_size, num_hiddens, num_heads, dropout, use_bias) self.addnorm1 = AddNorm(norm_shape, dropout) self.ffn = PositionWiseFFN( ffn_num_input, ffn_num_hiddens, num_hiddens) self.addnorm2 = AddNorm(norm_shape, dropout) def forward(self, X, valid_lens): Y = self.addnorm1(X, self.attention(X, X, X, valid_lens)) return self.addnorm2(Y, self.ffn(Y)) X = torch.ones((2, 100, 24)) valid_lens = torch.tensor([3, 2]) encoder_blk = EncoderBlock(24, 24, 24, 24, [100, 24], 24, 48, 8, 0.5) encoder_blk.eval() encoder_blk(X, valid_lens).shape torch.Size([2, 100, 24])

这段代码定义了一个Transformer编码器块(EncoderBlock)的类。该编码器块包含了多头注意力(MultiHeadAttention)、残差连接与层规范化(AddNorm)和基于位置的前馈网络(PositionWiseFFN)。 在初始化方法中,首先创建了一个多头注意力的实例self.attention,然后创建了两个AddNorm实例self.addnorm1和self.addnorm2,分别用于在注意力和前馈网络之后进行残差连接与层规范化。最后创建了一个PositionWiseFFN实例self.ffn。 在前向传播方法中,输入张量X和有效长度valid_lens被输入到多头注意力中进行自注意力计算,并通过残差连接与层规范化进行处理。然后将处理后的张量输入到基于位置的前馈网络中,再次通过残差连接与层规范化进行处理。最后返回处理后的张量Y。 在代码的最后,创建了一个EncoderBlock的实例encoder_blk,并对其进行了评估(eval())。然后,将一个大小为(2, 100, 24)的张量X和有效长度valid_lens输入到encoder_blk中,并打印出输出张量的形状。 结果是一个大小为(2, 100, 24)的张量,表示经过Transformer编码器块后的输出张量的形状与输入张量相同。

使用transformer实现光伏预测项目

光伏预测是一个时间序列预测问题,可以使用Transformer模型进行建模和预测。下面是一个简单的光伏预测示例代码: ```python import torch import torch.nn as nn import pandas as pd import numpy as np from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error # 加载数据 data = pd.read_csv('pv_data.csv', index_col=0) # 数据预处理 scaler = MinMaxScaler() data_scaled = scaler.fit_transform(data.values) # 划分训练集和测试集 train_size = int(len(data_scaled) * 0.8) train_data = data_scaled[:train_size] test_data = data_scaled[train_size:] # 定义超参数 input_size = 1 hidden_size = 16 num_layers = 2 dropout = 0.2 lr = 0.001 num_epochs = 100 # 定义Transformer模型 class TransformerModel(nn.Module): def __init__(self, input_size, hidden_size, num_layers, dropout): super(TransformerModel, self).__init__() self.model_type = 'Transformer' self.pos_encoder = PositionalEncoding(hidden_size, dropout) encoder_layers = nn.TransformerEncoderLayer(hidden_size, nhead=8) self.transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers) self.encoder = nn.Linear(input_size, hidden_size) self.decoder = nn.Linear(hidden_size, 1) def forward(self, src): src = self.encoder(src) * np.sqrt(self.hidden_size) src = self.pos_encoder(src) output = self.transformer_encoder(src) output = self.decoder(output) return output # 定义位置编码器 class PositionalEncoding(nn.Module): def __init__(self, d_model, dropout=0.1, max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0).transpose(0, 1) self.register_buffer('pe', pe) def forward(self, x): x = x + self.pe[:x.size(0), :] return self.dropout(x) # 训练模型 model = TransformerModel(input_size, hidden_size, num_layers, dropout) criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=lr) for epoch in range(num_epochs): model.train() train_loss = 0.0 for i in range(input_size, len(train_data)): x = train_data[i - input_size:i, :] y = train_data[i, :] x = torch.from_numpy(x).float().unsqueeze(0) y = torch.from_numpy(y).float() optimizer.zero_grad() output = model(x) loss = criterion(output, y) loss.backward() optimizer.step() train_loss += loss.item() train_loss /= (len(train_data) - input_size) print('Epoch [{}/{}], Train Loss: {:.4f}'.format(epoch + 1, num_epochs, train_loss)) # 测试模型 model.eval() test_loss = 0.0 predictions = [] with torch.no_grad(): for i in range(input_size, len(test_data)): x = test_data[i - input_size:i, :] y = test_data[i, :] x = torch.from_numpy(x).float().unsqueeze(0) y = torch.from_numpy(y).float() output = model(x) loss = criterion(output, y) test_loss += loss.item() predictions.append(output.detach().numpy().squeeze()) test_loss /= (len(test_data) - input_size) rmse = np.sqrt(mean_squared_error(test_data[input_size:], predictions)) print('Test Loss: {:.4f}, RMSE: {:.4f}'.format(test_loss, rmse)) ``` 在这个示例中,我们使用 `pandas` 库加载了一个光伏发电量数据集,并使用 `sklearn` 库中的 `MinMaxScaler` 对数据进行预处理,将数据缩放到0到1的范围内。然后,我们将数据划分为训练集和测试集,并定义了一些超参数,包括输入大小、隐藏层大小、层数、dropout、学习率和训练轮数。 接下来,我们定义了一个Transformer模型,包括位置编码器和Transformer编码器。在训练模型时,我们使用均方误差作为损失函数,使用Adam优化器更新模型参数。在测试模型时,我们计算了测试集上的均方误差和均方根误差。 需要注意的是,这个示例只是一个简单的光伏预测示例,实际应用需要根据具体情况进行调整和优化。

相关推荐

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

spring添加xml配置文件

1. 创建一个新的Spring配置文件,例如"applicationContext.xml"。 2. 在文件头部添加XML命名空间和schema定义,如下所示: ``` <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

输出这段Python代码输出所有3位整数中,个位是5且是3的倍数的整数

``` for i in range(100,1000): if i%10 == 5 and i%3 == 0: print(i) ``` 输出结果: ``` 105 135 165 195 225 255 285 315 345 375 405 435 465 495 525 555 585 615 645 675 705 735 765 795 825 855 885 915 945 975 ```
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩