likelihood = distribution.log_prob(labels[zero_index])
时间: 2024-05-31 19:09:37 浏览: 97
这行代码是在计算模型的似然度(likelihood),也可以理解为模型预测结果与真实结果的匹配程度。其中,`distribution` 是一个概率分布对象,`log_prob` 是该分布对象的一个方法,用于计算给定标签的对数概率值。`labels[zero_index]` 是指真实标签中第 `zero_index` 个位置的值。因此,这行代码的作用是计算模型对于给定标签的预测结果与真实结果的匹配程度,并将其作为似然度。
相关问题
解释一段python代码 class KalmanFilter(object): def init(self, dim_x, dim_z, dim_u=0): if dim_x < 1: raise ValueError('dim_x must be 1 or greater') if dim_z < 1: raise ValueError('dim_z must be 1 or greater') if dim_u < 0: raise ValueError('dim_u must be 0 or greater') self.dim_x = dim_x self.dim_z = dim_z self.dim_u = dim_u self.x = zeros((dim_x, 1)) # state self.P = eye(dim_x) # uncertainty covariance self.Q = eye(dim_x) # process uncertainty self.B = None # control transition matrix self.F = eye(dim_x) # state transition matrix self.H = zeros((dim_z, dim_x)) # Measurement function self.R = eye(dim_z) # state uncertainty self._alpha_sq = 1. # fading memory control self.M = np.zeros((dim_z, dim_z)) # process-measurement cross correlation self.z = np.array([[None]*self.dim_z]).T # gain and residual are computed during the innovation step. We # save them so that in case you want to inspect them for various # purposes self.K = np.zeros((dim_x, dim_z)) # kalman gain self.y = zeros((dim_z, 1)) self.S = np.zeros((dim_z, dim_z)) # system uncertainty self.SI = np.zeros((dim_z, dim_z)) # inverse system uncertainty # identity matrix. Do not alter this. self._I = np.eye(dim_x) # these will always be a copy of x,P after predict() is called self.x_prior = self.x.copy() self.P_prior = self.P.copy() # these will always be a copy of x,P after update() is called self.x_post = self.x.copy() self.P_post = self.P.copy() # Only computed only if requested via property self._log_likelihood = log(sys.float_info.min) self._likelihood = sys.float_info.min self._mahalanobis = None self.inv = np.linalg.inv
这段Python代码是KalmanFilter类的初始化方法。在这个方法中,首先会检查dim_x、dim_z和dim_u是否符合要求,如果不符合就会抛出ValueError异常。然后会根据参数的值初始化KalmanFilter对象的各个属性,包括状态量的维度dim_x、观测量的维度dim_z、控制量的维度dim_u。初始化时,状态量x被初始化为一个dim_x行1列的零向量,不确定性协方差P被初始化为dim_x阶单位矩阵,过程不确定性Q也被初始化为dim_x阶单位矩阵。控制转移矩阵B、状态转移矩阵F、测量函数H、状态不确定性R、过程-测量交叉相关M、增长记忆控制参数_alpha_sq、测量残差z、卡尔曼增益K、残差y、系统不确定性S和其逆矩阵SI等都被初始化为相应的大小的零矩阵或数组。这个类还包含一个求逆矩阵的方法inv。
Granger Causality number of lags (no zero) 1 ssr based F test: F=0.4805 , p=0.5106 , df_denom=7, df_num=1 ssr based chi2 test: chi2=0.6864 , p=0.4074 , df=1 likelihood ratio test: chi2=0.6638 , p=0.4152 , df=1 parameter F test: F=0.4805 , p=0.5106 , df_denom=7, df_num=1 Granger Causality number of lags (no zero) 2 ssr based F test: F=0.6001 , p=0.5917 , df_denom=4, df_num=2 ssr based chi2 test: chi2=2.7003 , p=0.2592 , df=2 likelihood ratio test: chi2=2.3615 , p=0.3071 , df=2 parameter F test: F=0.6001 , p=0.5917 , df_denom=4, df_num=2 Granger Causality number of lags (no zero) 3 ssr based F test: F=0.4331 , p=0.7741 , df_denom=1, df_num=3 ssr based chi2 test: chi2=10.3943 , p=0.0155 , df=3 likelihood ratio test: chi2=6.6608 , p=0.0835 , df=3 parameter F test: F=0.4331 , p=0.7741 , df_denom=1, df_num=3
这段文字描述了格兰杰因果性测试的结果。格兰杰因果性测试是一种统计方法,用于判断两个时间序列之间是否存在因果关系。在这里,对于每一种滞后期的情况,都进行了四种不同的统计检验,包括 ssr based F test、ssr based chi2 test、likelihood ratio test 和 parameter F test。每种检验的结果都包括一个统计量和一个 p 值,p 值表示检验的显著性水平。如果 p 值小于等于 0.05,则认为存在显著的因果关系。在这里,可以看出对于滞后期为 1 和 2 的情况,p 值都大于 0.05,因此认为不存在因果关系。而对于滞后期为 3 的情况,ssr based chi2 test 和 likelihood ratio test 的 p 值都小于 0.05,因此认为存在显著的因果关系。
阅读全文