解释一下这段代码 [likelihood_map] = getColourMap(im_patch_pwp, bg_hist, fg_hist, p.n_bins, p.grayscale_sequence); % (TODO) in theory it should be at 0.5 (unseen colors shoud have max entropy) likelihood_map(isnan(likelihood_map)) = 0; % each pixel of response_pwp loosely represents the likelihood that % the target (of size norm_target_sz) is centred on it response_pwp = getCenterLikelihood(likelihood_map, p.norm_target_sz);
时间: 2024-03-18 13:45:12 浏览: 61
这段代码的作用是获取一个颜色地图的概率分布图。首先,将输入的图像块(im_patch_pwp)和背景直方图(bg_hist)以及前景直方图(fg_hist)作为输入,根据颜色分布计算像素点的概率值,并将结果存储在likelihood_map中。其中,p.n_bins表示直方图的bin数量,p.grayscale_sequence表示是否将图像转换为灰度图像。接着,将likelihood_map中的NaN值设为0,最后通过getCenterLikelihood函数计算得到response_pwp,该值表示图像块中每个像素点作为目标中心的可能性。
相关问题
详细解释一下这段代码 % extract patch of size bg_area and resize to norm_bg_area im_patch_cf = getSubwindow(im, pos, p.norm_bg_area, bg_area); pwp_search_area = round(p.norm_pwp_search_area / area_resize_factor); % extract patch of size pwp_search_area and resize to norm_pwp_search_area im_patch_pwp = getSubwindow(im, pos, p.norm_pwp_search_area, pwp_search_area); % compute feature map xt = getFeatureMap(im_patch_cf, p.feature_type, p.cf_response_size, p.hog_cell_size); % apply Hann window xt_windowed = bsxfun(@times, hann_window, xt); % compute FFT xtf = fft2(xt_windowed); % Correlation between filter and test patch gives the response % Solve diagonal system per pixel. if p.den_per_channel hf = hf_num ./ (hf_den + p.lambda); else hf = bsxfun(@rdivide, hf_num, sum(hf_den, 3)+p.lambda); end response_cf = ensure_real(ifft2(sum(conj(hf) .* xtf, 3))); % Crop square search region (in feature pixels). response_cf = cropFilterResponse(response_cf, ... floor_odd(p.norm_delta_area / p.hog_cell_size)); if p.hog_cell_size > 1 % Scale up to match center likelihood resolution. response_cf = mexResize(response_cf, p.norm_delta_area,'auto'); end [likelihood_map] = getColourMap(im_patch_pwp, bg_hist, fg_hist, p.n_bins, p.grayscale_sequence); % (TODO) in theory it should be at 0.5 (unseen colors shoud have max entropy) likelihood_map(isnan(likelihood_map)) = 0; % each pixel of response_pwp loosely represents the likelihood that % the target (of size norm_target_sz) is centred on it response_pwp = getCenterLikelihood(likelihood_map, p.norm_target_sz);
这段代码是跟踪算法中的一部分。它将目标模板和当前帧中的搜索区域进行相关运算,以测量目标在搜索区域中的相似度,然后根据相似度对搜索区域进行排名,找到最可能的目标位置。具体地:
- 首先,从当前帧中提取两个不同大小的图像块,即目标模板和搜索区域,并将它们调整为算法所需的标准大小(norm_bg_area和norm_pwp_search_area)。
- 接着,对目标模板进行特征提取,生成一个特征图(xt)。
- 对特征图应用汉宁窗口,然后对窗口后的特征图进行FFT变换,得到频域特征图(xtf)。
- 计算目标模板和搜索区域的频域特征图的相关性,以得到搜索区域的响应(response_cf)。
- 裁剪响应图,只保留与目标大小相似的部分,然后根据HOG单元大小对响应图进行放缩,以与中心似然图的分辨率匹配。
- 对搜索区域进行颜色直方图计算,得到中心似然图(likelihood_map)。
- 将中心似然图中的NaN值设置为0。
- 最后,使用中心似然图计算每个像素点对于目标中心位置的可能性,生成响应图(response_pwp)。
这些响应图最终会被组合在一起,以找到最可能的目标位置。
解释一段python代码 class KalmanFilter(object): def init(self, dim_x, dim_z, dim_u=0): if dim_x < 1: raise ValueError('dim_x must be 1 or greater') if dim_z < 1: raise ValueError('dim_z must be 1 or greater') if dim_u < 0: raise ValueError('dim_u must be 0 or greater') self.dim_x = dim_x self.dim_z = dim_z self.dim_u = dim_u self.x = zeros((dim_x, 1)) # state self.P = eye(dim_x) # uncertainty covariance self.Q = eye(dim_x) # process uncertainty self.B = None # control transition matrix self.F = eye(dim_x) # state transition matrix self.H = zeros((dim_z, dim_x)) # Measurement function self.R = eye(dim_z) # state uncertainty self._alpha_sq = 1. # fading memory control self.M = np.zeros((dim_z, dim_z)) # process-measurement cross correlation self.z = np.array([[None]*self.dim_z]).T # gain and residual are computed during the innovation step. We # save them so that in case you want to inspect them for various # purposes self.K = np.zeros((dim_x, dim_z)) # kalman gain self.y = zeros((dim_z, 1)) self.S = np.zeros((dim_z, dim_z)) # system uncertainty self.SI = np.zeros((dim_z, dim_z)) # inverse system uncertainty # identity matrix. Do not alter this. self._I = np.eye(dim_x) # these will always be a copy of x,P after predict() is called self.x_prior = self.x.copy() self.P_prior = self.P.copy() # these will always be a copy of x,P after update() is called self.x_post = self.x.copy() self.P_post = self.P.copy() # Only computed only if requested via property self._log_likelihood = log(sys.float_info.min) self._likelihood = sys.float_info.min self._mahalanobis = None self.inv = np.linalg.inv
这段Python代码是KalmanFilter类的初始化方法。在这个方法中,首先会检查dim_x、dim_z和dim_u是否符合要求,如果不符合就会抛出ValueError异常。然后会根据参数的值初始化KalmanFilter对象的各个属性,包括状态量的维度dim_x、观测量的维度dim_z、控制量的维度dim_u。初始化时,状态量x被初始化为一个dim_x行1列的零向量,不确定性协方差P被初始化为dim_x阶单位矩阵,过程不确定性Q也被初始化为dim_x阶单位矩阵。控制转移矩阵B、状态转移矩阵F、测量函数H、状态不确定性R、过程-测量交叉相关M、增长记忆控制参数_alpha_sq、测量残差z、卡尔曼增益K、残差y、系统不确定性S和其逆矩阵SI等都被初始化为相应的大小的零矩阵或数组。这个类还包含一个求逆矩阵的方法inv。
阅读全文