standard estimate和estimate的区别
时间: 2023-09-28 11:13:44 浏览: 266
标准估计(standard estimate)和估计(estimate)之间的区别在于其所涉及的背景和精确性。
标准估计是指在特定领域或行业中广泛接受的估计方法或数值。它通常是基于过去的经验、统计数据或行业的最佳实践。标准估计是一种被认可的方法,可以在特定情况下提供一种相对准确的估计,但并不保证100%的精确性。标准估计通常用于简化复杂的问题,提供一种可靠的近似值。
而估计是根据有限的信息和推理所得出的近似值。估计可以基于专家判断、统计分析、模型预测等多种方法。估计的精确性取决于所使用的信息和方法的可靠性,以及估计过程中的不确定性。估计通常用于缺乏完整数据或无法进行准确测量的情况下。
总之,标准估计是指在特定领域或行业中广泛接受的相对准确的估计方法或数值,而估计是根据有限信息得出的近似值,其精确性取决于所使用的信息和方法的可靠性。
相关问题
piecewiseSEM Std.Estimate
piecewiseSEM (Piecewise Structural Equation Modeling) is a statistical technique used to estimate the direct and indirect effects of predictor variables on an outcome variable, while accounting for possible dependencies and feedback loops among the predictors themselves.
The Std.Estimate in piecewiseSEM refers to the standardized estimate of the regression coefficients, which indicates the magnitude and direction of the effect of each predictor variable on the outcome variable, after controlling for the effects of all other predictors in the model.
Standardized estimates are useful because they express the effect of each predictor variable in units of standard deviation of the predictor and the outcome variables, making them comparable across different variables and models. Moreover, standardized estimates can reveal which predictor variables have the strongest and weakest effects on the outcome variable, and whether their effects are positive or negative.
Write MATLAB code that implements the parametric bootstrap.Test it using the forearm data.Assume that the normal distribu-tion is a reasonable model for the data.Use your code to get abootstrap estimate of the standard error and the bias of the coeffi-cie
Sure, here is the MATLAB code that implements the parametric bootstrap:
```matlab
% Load forearm data
load forearm
% Define function that fits linear regression model and returns coefficient estimates
fit_lm = @(x, y) [ones(size(x)), x] \ y;
% Define number of bootstrap samples
B = 1000;
% Define empty arrays to store bootstrap estimates
beta0_boot = zeros(B, 1);
beta1_boot = zeros(B, 1);
% Compute original coefficient estimates
beta_orig = fit_lm(forearm(:, 1), forearm(:, 2));
% Compute standard deviation of residuals
resid_std = std(forearm(:, 2) - beta_orig(1) - beta_orig(2) * forearm(:, 1));
% Perform bootstrap
for i = 1:B
% Generate bootstrap sample
y_boot = beta_orig(1) + beta_orig(2) * forearm(:, 1) + randn(size(forearm(:, 1))) * resid_std;
% Fit linear regression model to bootstrap sample
beta_boot = fit_lm(forearm(:, 1), y_boot);
% Store bootstrap estimates
beta0_boot(i) = beta_boot(1);
beta1_boot(i) = beta_boot(2);
end
% Compute bootstrap standard errors and bias
beta0_se = std(beta0_boot);
beta1_se = std(beta1_boot);
beta0_bias = mean(beta0_boot) - beta_orig(1);
beta1_bias = mean(beta1_boot) - beta_orig(2);
% Display results
disp(['Bootstrap standard error of intercept: ', num2str(beta0_se)]);
disp(['Bootstrap standard error of slope: ', num2str(beta1_se)]);
disp(['Bootstrap bias of intercept: ', num2str(beta0_bias)]);
disp(['Bootstrap bias of slope: ', num2str(beta1_bias)]);
```
This code fits a linear regression model to the forearm data using the `fit_lm` function, which simply calls the backslash operator to perform the least squares optimization. It then defines the number of bootstrap samples `B`, and initializes empty arrays to store the bootstrap estimates.
The code then computes the standard deviation of the residuals of the original model, which is used to generate the bootstrap samples. It then iterates over `B` bootstrap samples, generating a new set of observations by adding Gaussian noise to the original predictions based on the standard deviation of the residuals. It fits a new linear regression model to each bootstrap sample, and stores the resulting coefficient estimates.
Finally, the code computes the standard errors and bias of the bootstrap estimates, and displays the results.
阅读全文