修改为逻辑回归的代价函数:def compute_cost(X, y, w, b, lambda_=1): m = X.shape[0] y_hat = np.dot(X, w) + b cost = np.sum((y_hat - y) ** 2) / (2 * m) + lambda_ / (2 * m) * np.sum(w ** 2) return cost

时间: 2024-03-17 15:41:13 浏览: 212
逻辑回归的代价函数如下所示: $$ J(w,b)=-\frac{1}{m}\sum_{i=1}^{m}\left[y^{(i)}\log\left(h_{w,b}(x^{(i)})\right)+\left(1-y^{(i)}\right)\log\left(1-h_{w,b}(x^{(i)})\right)\right]+\frac{\lambda}{2m}\sum_{j=1}^{n}w_j^2 $$ 其中,$m$ 表示样本数量,$n$ 表示特征数量,$y^{(i)}$ 表示第 $i$ 个样本的标签,$h_{w,b}(x^{(i)})$ 是模型对第 $i$ 个样本的预测结果,$\lambda$ 是正则化超参数。 对应的 Python 代码如下: ```python def compute_cost(X, y, w, b, lambda_=1): m = X.shape[0] y_hat = sigmoid(np.dot(X, w) + b) cost = -np.sum(y * np.log(y_hat) + (1 - y) * np.log(1 - y_hat)) / m + lambda_ / (2 * m) * np.sum(w ** 2) return cost ``` 其中,`sigmoid` 函数可以用以下代码实现: ```python def sigmoid(z): return 1 / (1 + np.exp(-z)) ```
相关问题

解释每行代码:def gradient_descent(X, y, w_in, b_in, cost_function, gradient_function, alpha, num_iters, lambda_): m = len(X) J_history = [] w_history = [] for i in range(num_iters): dj_db, dj_dw = compute_gradient(X, y, w_in, b_in) w_in = w_in - alpha * dj_dw b_in = b_in - alpha * dj_db if i<100000: cost = compute_cost(X, y, w_in, b_in, lambda_) J_history.append(cost) if i% math.ceil(num_iters/10) == 0 or i == (num_iters-1): w_history.append(w_in) return w_in, b_in, J_history, w_history np.random.seed(1) intial_w = 0.01 * (np.random.rand(2).reshape(-1,1) - 0.5) initial_b = -8 iterations = 10000 alpha = 0.001 w,b, J_history,_ = gradient_descent(X_train ,y_train, initial_w, initial_b, compute_cost, compute_gradient, alpha, iterations, 0) plot_decision_boundary(w, b, X_train, y_train)

这段代码定义了一个梯度下降函数 gradient_descent,其输入参数包括训练数据 X、标签 y、权重 w_in、偏置 b_in、损失函数 cost_function、梯度函数 gradient_function、学习率 alpha、迭代次数 num_iters 和正则化参数 lambda_。函数的目的是通过梯度下降算法来优化模型的参数,使得模型的损失函数最小化。 在函数内部,首先获取训练数据的样本数量 m,并定义两个空列表 J_history 和 w_history 用于存储每次迭代后的损失函数值和权重值。然后使用循环进行迭代,其中每次迭代都会计算当前的梯度,并根据梯度和学习率更新权重和偏置。 在迭代过程中,如果当前迭代次数小于 100000,则计算当前的损失函数值并将其添加到 J_history 中。另外,每隔一定的迭代次数就将当前的权重值添加到 w_history 中。 最后,函数返回更新后的权重和偏置值以及 J_history 和 w_history。 接下来,代码使用 np.random.seed(1) 来设置随机种子,然后通过 np.random.rand(2).reshape(-1,1) - 0.5 来生成一个形状为 (2,1) 的随机数组,并将其乘以 0.01 再减去 0.5 得到 initial_w。同时,将 initial_b 设置为 -8,并将 iterations 和 alpha 分别设置为 10000 和 0.001。 最后,调用 gradient_descent 函数来训练模型,并使用 plot_decision_boundary 函数来绘制决策边界。

简化并解释每行代码:X_train, y_train = load_data("data/ex2data2.txt") plot_data(X_train, y_train[:], pos_label="Accepted", neg_label="Rejected") plt.ylabel('Microchip Test 2') plt.xlabel('Microchip Test 1') plt.legend(loc="upper right") plt.show() mapped_X = map_feature(X_train[:, 0], X_train[:, 1]) def compute_cost_reg(X, y, w, b, lambda_=1): m = X.shape[0] cost = 0 f = sigmoid(np.dot(X, w) + b) reg = (lambda_/(2*m)) * np.sum(np.square(w)) cost = (1/m)np.sum(-ynp.log(f) - (1-y)*np.log(1-f)) + reg return cost def compute_gradient_reg(X, y, w, b, lambda_=1): m = X.shape[0] cost = 0 dw = np.zeros_like(w) f = sigmoid(np.dot(X, w) + b) err = (f - y) dw = (1/m)*np.dot(X.T, err) dw += (lambda_/m) * w db = (1/m) * np.sum(err) return db,dw X_mapped = map_feature(X_train[:, 0], X_train[:, 1]) np.random.seed(1) initial_w = np.random.rand(X_mapped.shape[1]) - 0.5 initial_b = 0.5 lambda_ = 0.5 dj_db, dj_dw = compute_gradient_reg(X_mapped, y_train, initial_w, initial_b, lambda_) np.random.seed(1) initial_w = np.random.rand(X_mapped.shape[1])-0.5 initial_b = 1. lambda_ = 0.01; iterations = 10000 alpha = 0.01 w,b, J_history,_ = gradient_descent(X_mapped, y_train, initial_w, initial_b, compute_cost_reg, compute_gradient_reg, alpha, iterations, lambda_) plot_decision_boundary(w, b, X_mapped, y_train) p = predict(X_mapped, w, b) print('Train Accuracy: %f'%(np.mean(p == y_train) * 100))

这段代码主要实现了一个二分类问题的训练和预测。下面是每一行代码的解释: ``` X_train, y_train = load_data("data/ex2data2.txt") ``` 从文件中读取训练数据,将特征存储在X_train中,将标签存储在y_train中。 ``` plot_data(X_train, y_train[:], pos_label="Accepted", neg_label="Rejected") plt.ylabel('Microchip Test 2') plt.xlabel('Microchip Test 1') plt.legend(loc="upper right") plt.show() ``` 画出训练数据的散点图,其中Accepted为正例标签,Rejected为负例标签,横坐标为Microchip Test 1,纵坐标为Microchip Test 2。 ``` mapped_X = map_feature(X_train[:, 0], X_train[:, 1]) ``` 将原始特征映射成更高维的特征,以便更好地拟合非线性决策边界。 ``` def compute_cost_reg(X, y, w, b, lambda_=1): m = X.shape[0] cost = 0 f = sigmoid(np.dot(X, w) + b) reg = (lambda_/(2*m)) * np.sum(np.square(w)) cost = (1/m)np.sum(-ynp.log(f) - (1-y)*np.log(1-f)) + reg return cost ``` 计算带正则化的逻辑回归代价函数,其中X为特征数据,y为标签,w为权重,b为偏置,lambda_为正则化参数。 ``` def compute_gradient_reg(X, y, w, b, lambda_=1): m = X.shape[0] cost = 0 dw = np.zeros_like(w) f = sigmoid(np.dot(X, w) + b) err = (f - y) dw = (1/m)*np.dot(X.T, err) dw += (lambda_/m) * w db = (1/m) * np.sum(err) return db,dw ``` 计算带正则化的逻辑回归梯度,其中X为特征数据,y为标签,w为权重,b为偏置,lambda_为正则化参数。 ``` X_mapped = map_feature(X_train[:, 0], X_train[:, 1]) np.random.seed(1) initial_w = np.random.rand(X_mapped.shape[1]) - 0.5 initial_b = 0.5 lambda_ = 0.5 dj_db, dj_dw = compute_gradient_reg(X_mapped, y_train, initial_w, initial_b, lambda_) ``` 将映射后的特征、权重、偏置和正则化参数传入梯度计算函数,计算出代价函数对权重和偏置的偏导数。 ``` np.random.seed(1) initial_w = np.random.rand(X_mapped.shape[1])-0.5 initial_b = 1. lambda_ = 0.01; iterations = 10000; alpha = 0.01 w,b, J_history,_ = gradient_descent(X_mapped, y_train, initial_w, initial_b, compute_cost_reg, compute_gradient_reg, alpha, iterations, lambda_) ``` 使用梯度下降算法对代价函数进行优化,得到最优的权重和偏置,lambda_为正则化参数,iterations为迭代次数,alpha为学习率。 ``` plot_decision_boundary(w, b, X_mapped, y_train) ``` 画出决策边界。 ``` p = predict(X_mapped, w, b) print('Train Accuracy: %f'%(np.mean(p == y_train) * 100)) ``` 使用训练好的模型进行预测,并计算训练精度。
阅读全文

相关推荐

def nnCostFunction(nn_params,input_layer_size, hidden_layer_size, num_labels,X, y,Lambda): # Reshape nn_params back into the parameters Theta1 and Theta2 Theta1 = nn_params[:((input_layer_size+1) * hidden_layer_size)].reshape(hidden_layer_size,input_layer_size+1) Theta2 = nn_params[((input_layer_size +1)* hidden_layer_size ):].reshape(num_labels,hidden_layer_size+1) m = X.shape[0] J=0 X = np.hstack((np.ones((m,1)),X)) y10 = np.zeros((m,num_labels)) a1 = sigmoid(X @ Theta1.T) a1 = np.hstack((np.ones((m,1)), a1)) # hidden layer a2 = sigmoid(a1 @ Theta2.T) # output layer for i in range(1,num_labels+1): y10[:,i-1][:,np.newaxis] = np.where(y==i,1,0) for j in range(num_labels): J = J + sum(-y10[:,j] * np.log(a2[:,j]) - (1-y10[:,j])*np.log(1-a2[:,j])) cost = 1/m* J reg_J = cost + Lambda/(2*m) * (np.sum(Theta1[:,1:]**2) + np.sum(Theta2[:,1:]**2)) # Implement the backpropagation algorithm to compute the gradients grad1 = np.zeros((Theta1.shape)) grad2 = np.zeros((Theta2.shape)) for i in range(m): xi= X[i,:] # 1 X 401 a1i = a1[i,:] # 1 X 26 a2i =a2[i,:] # 1 X 10 d2 = a2i - y10[i,:] d1 = Theta2.T @ d2.T * sigmoidGradient(np.hstack((1,xi @ Theta1.T))) grad1= grad1 + d1[1:][:,np.newaxis] @ xi[:,np.newaxis].T grad2 = grad2 + d2.T[:,np.newaxis] @ a1i[:,np.newaxis].T grad1 = 1/m * grad1 grad2 = 1/m*grad2 grad1_reg = grad1 + (Lambda/m) * np.hstack((np.zeros((Theta1.shape[0],1)),Theta1[:,1:])) grad2_reg = grad2 + (Lambda/m) * np.hstack((np.zeros((Theta2.shape[0],1)),Theta2[:,1:])) return cost, grad1, grad2,reg_J, grad1_reg,grad2_reg

最新推荐

recommend-type

yolov3 在 Open Images 数据集上预训练了 SPP 权重以及配置文件.zip

yolov3 在 Open Images 数据集上预训练了 SPP 权重以及配置文件如果权重无法下载,则可能是存储库超出了 git lfs 配额。请从没有此限制的bitbucket 存储库中提取。此存储库包含 yolov3 权重以及配置文件。该模型在Kaggle Open Images 挑战赛的私有 LB 上实现了 42.407 的 mAP 。为了使用这些权重,您需要安装darknet 。您可以在项目网站上阅读更多相关信息。有多种方法可以使用 darknet 进行检测。一种方法是创建一个 txt 文件,其中包含要运行检测的图像的路径,并从包含的 yolo.data 文件中指向该文件。运行检测的命令(假设 darknet 安装在该 repo 的根目录中)是 ./darknet/darknet detector valid yolo.data yolov3-spp.cfg yolov3-spp_final.weights我分享这些权重是因为它们可能对某些人有用。如果您遇到任何问题,我无法提供任何支持。Yolo 不太容易排除故障,如果您遇到段错误,则需要您自己找出问题所
recommend-type

qt 5.3.2 mingw 安装包

qt 5.3.2 mingw 安装包
recommend-type

586befcf3e78455eb3b5359d7500cc97.JPG

586befcf3e78455eb3b5359d7500cc97.JPG
recommend-type

yoloface-50k的可部署模型.zip

yoloface-50k的可部署模型yoloface-50k本仓库包含已量化的yoloface tflite模型以及未量化的onnx模型,h5模型和pb模型,另外还有使用pytorch解析运行yolocfg和weight的小工具本仓库所使用的网络模型来自dog-qiuqiu/MobileNet-Yolo,感谢这位大佬ncnn: yoloface使用ncnn推理后的工程,可以在CPU上实时运行。其中libncnn.a是在Ubuntu 20.04上编译的,如果是不同的操作系统,请下载ncnn自行编译替换tensorflow: 内含yolo转h5、h5转pb的代码tflite: pb转tflite并求解的代码固件单片机部分代码。因为硬件不同所以没有上传整个工程,摘取了核心代码,另附STM32CUBEMX工程文件参考。注意代码中nms是意象的nms,并没有进行非极大值抑制,只是提取了引起置信度的目标,使用时可自己添加
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依