criteria = (cv2.TERM_CRITERIA_MAX_ITER | cv2.TERM_CRITERIA_EPS, 300, 0.00001) 怎么理解
时间: 2023-08-08 18:13:20 浏览: 273
这行代码定义了一个终止条件 (termination criteria) 用于 OpenCV 中的迭代优化算法,如光流估计、亚像素级别的角点检测和物体跟踪等。其中,TERM_CRITERIA_MAX_ITER 表示最大迭代次数,TERM_CRITERIA_EPS 表示误差限制。在这个例子中,迭代次数上限为 300 次,误差限制为 0.00001。当达到最大迭代次数或误差限制时,迭代将终止。这样的终止条件可以保证算法在合理的时间内收敛到一个较好的结果。
相关问题
改进下面代码使其输出特征连线图和拼接图import cv2 import numpy as np #加载两张需要拼接的图片: img1 = cv2.imread('men3.jpg') img2 = cv2.imread('men4.jpg') #将两张图片转换为灰度图像: gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY) #使用Shi-Tomasi角点检测器找到两张图片中的特征点: # 设定Shi-Tomasi角点检测器的参数 feature_params = dict(maxCorners=100, qualityLevel=0.3, minDistance=7, blockSize=7) # 检测特征点 p1 = cv2.goodFeaturesToTrack(gray1, **feature_params) p2 = cv2.goodFeaturesToTrack(gray2, **feature_params) #使用Lucas-Kanade光流法计算特征点的移动向量: # 设定Lucas-Kanade光流法的参数 lk_params = dict(winSize=(15, 15), maxLevel=2, criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03)) # 计算特征点的移动向量 p1, st, err = cv2.calcOpticalFlowPyrLK(gray1, gray2, p1, None, **lk_params) p2, st, err = cv2.calcOpticalFlowPyrLK(gray2, gray1, p2, None, **lk_params) #计算两张图片的变换矩阵: # 使用RANSAC算法计算变换矩阵 M, mask = cv2.findHomography(p1, p2, cv2.RANSAC, 5.0) #将两张图片拼接成一张: # 计算拼接后的图像大小 h, w = img1.shape[:2] pts = np.array([[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]], dtype=np.float32).reshape(-1, 1, 2) dst = cv2.perspectiveTransform(pts, M) xmin, ymin = np.int32(dst.min(axis=0).ravel() - 0.5) xmax, ymax = np.int32(dst.max(axis=0).ravel() + 0.5) tx, ty = -xmin, -ymin H, W = xmax - xmin, ymax - ymin # 计算拼接后的图像 timg = np.zeros((H, W, 3), dtype=np.uint8) timg[ty:ty + h, tx:tx + w] = img1 new_p2 = cv2.perspectiveTransform(p2, M) timg = cv2.polylines(timg, [np.int32(new_p2 + (tx, ty))], True, (0, 255, 255), 1, cv2.LINE_AA)
以下是改进后的代码,可以输出特征连线图和拼接图:
```python
import cv2
import numpy as np
#加载两张需要拼接的图片:
img1 = cv2.imread('men3.jpg')
img2 = cv2.imread('men4.jpg')
#将两张图片转换为灰度图像:
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
#使用Shi-Tomasi角点检测器找到两张图片中的特征点:
# 设定Shi-Tomasi角点检测器的参数
feature_params = dict(maxCorners=100, qualityLevel=0.3, minDistance=7, blockSize=7)
# 检测特征点
p1 = cv2.goodFeaturesToTrack(gray1, **feature_params)
p2 = cv2.goodFeaturesToTrack(gray2, **feature_params)
#使用Lucas-Kanade光流法计算特征点的移动向量:
# 设定Lucas-Kanade光流法的参数
lk_params = dict(winSize=(15, 15), maxLevel=2, criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
# 计算特征点的移动向量
p1, st, err = cv2.calcOpticalFlowPyrLK(gray1, gray2, p1, None, **lk_params)
p2, st, err = cv2.calcOpticalFlowPyrLK(gray2, gray1, p2, None, **lk_params)
#计算两张图片的变换矩阵:
# 使用RANSAC算法计算变换矩阵
M, mask = cv2.findHomography(p1, p2, cv2.RANSAC, 5.0)
#将两张图片拼接成一张:
# 计算拼接后的图像大小
h, w = img1.shape[:2]
pts = np.array([[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]], dtype=np.float32).reshape(-1, 1, 2)
dst = cv2.perspectiveTransform(pts, M)
xmin, ymin = np.int32(dst.min(axis=0).ravel() - 0.5)
xmax, ymax = np.int32(dst.max(axis=0).ravel() + 0.5)
tx, ty = -xmin, -ymin
H, W = xmax - xmin, ymax - ymin
# 计算拼接后的图像
timg = np.zeros((H, W, 3), dtype=np.uint8)
timg[ty:ty + h, tx:tx + w] = img1
# 计算特征连线图
new_p2 = cv2.perspectiveTransform(p2, M)
timg_line = cv2.polylines(timg.copy(), [np.int32(new_p2 + (tx, ty))], True, (0, 255, 255), 1, cv2.LINE_AA)
# 输出特征连线图
cv2.imshow('Feature Lines', timg_line)
cv2.waitKey(0)
# 拼接图加上特征连线
timg = cv2.polylines(timg, [np.int32(new_p2 + (tx, ty))], True, (0, 255, 255), 1, cv2.LINE_AA)
# 输出拼接图
cv2.imshow('Stitched Image', timg)
cv2.waitKey(0)
```
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
这行代码是用于设置计算机视觉中的迭代终止条件,其中cv2.TERM_CRITERIA_EPS表示通过指定的精度epsilon结束迭代,cv2.TERM_CRITERIA_MAX_ITER表示通过指定的最大迭代次数结束迭代,30表示最大迭代次数,0.001表示epsilon。即当满足精度要求或达到最大迭代次数时,算法会停止迭代。
阅读全文