基于 cnn 的疲劳检测源码-python

时间: 2023-06-06 22:02:33 浏览: 120
基于CNN的疲劳检测源码是基于人工神经网络的算法实现,用于检测人体疲劳情况。这一技术对于需要大量人工劳动的生产环境和汽车驾驶等行业,具有重要的应用价值。 在Python中,可以通过使用tensorflow等深度学习框架,实现基于CNN的疲劳检测。具体步骤如下: 1. 数据预处理:将预测的图像数据集划分为训练集和测试集,进行数据清洗和标准化处理。 2. 搭建CNN模型:通过tensorflow或其它框架来构建深度神经网络模型。包括卷积、池化、 dropout、全连接层等,还可以使用一些优化算法,如 Adam优化器。 3. 模型训练:训练CNN模型,并使用测试数据集来验证模型的效果。可以通过改变网络的参数来提高模型的准确性。 4. 疲劳检测:通过模型的预测结果,分析人体疲劳情况,判断其是否需要休息或进行调整。 总的来说,基于CNN的疲劳检测源码Python实现,需要熟练掌握深度学习和神经网络相关知识,还需要对Python编程语言有充分的掌握。只有掌握了这些技能,才能顺利实现这一重要技术,为企业的发展提供新的动力。
相关问题

python:基于cnn的人脸检测项目源码

Python是一门强大的编程语言,广泛应用于各类人工智能和数据科学项目中。其中基于CNN的人脸检测项目源码,是Python领域内的一个热门研究领域。 该人脸检测项目源码基于卷积神经网络(CNN)技术,可以准确地检测并识别图像中的人脸。具体实现流程包括以下几步: 第一步是数据预处理。从大量人脸图像中选取出合适的训练样本,对原始图像进行尺寸调整、灰度化、归一化等处理,提高识别准确率。 第二步是CNN模型训练。采用卷积神经网络的深度学习算法,并使用已有的训练集进行训练。通过不断调整网络参数,优化模型结构和训练过程,提高检测准确率。 第三步是人脸检测。测试阶段,利用训练好的CNN模型,对输入的新图像进行检测。通过卷积计算和池化操作,对图像中的特征进行提取和匹配,最终确定人脸的位置和大小。 通过以上实现步骤,基于CNN的人脸检测项目可以实现高效、可靠的人脸检测功能。此外,Python作为一门简单易学、开发效率高的编程语言,非常适合进行此类人工智能项目的开发。

基于cnn-lstm的轴承故障诊断python源码

很抱歉,根据提供的引用内容,我没有找到基于cnn-lstm的轴承故障诊断的Python源码。但是,我可以为您提供基于Tensorflow+CNN深度学习的轴承故障诊断的Python源码,您可以参考该代码进行学习和实现。 以下是基于Tensorflow+CNN深度学习的轴承故障诊断的Python源码: ```python import tensorflow as tf import numpy as np import os import time import datetime from tensorflow.contrib import learn import csv # Parameters # ================================================== # Data loading params tf.flags.DEFINE_float("dev_sample_percentage", .2, "Percentage of the training data to use for validation") tf.flags.DEFINE_string("positive_data_file", "./data/positive.csv", "Data source for the positive data.") tf.flags.DEFINE_string("negative_data_file", "./data/negative.csv", "Data source for the negative data.") # Model Hyperparameters tf.flags.DEFINE_integer("embedding_dim", 128, "Dimensionality of character embedding (default: 128)") tf.flags.DEFINE_string("filter_sizes", "3,4,5", "Comma-separated filter sizes (default: '3,4,5')") tf.flags.DEFINE_integer("num_filters", 128, "Number of filters per filter size (default: 128)") tf.flags.DEFINE_float("dropout_keep_prob", 0.5, "Dropout keep probability (default: 0.5)") tf.flags.DEFINE_float("l2_reg_lambda", 0.0, "L2 regularization lambda (default: 0.0)") # Training parameters tf.flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)") tf.flags.DEFINE_integer("num_epochs", 200, "Number of training epochs (default: 200)") tf.flags.DEFINE_integer("evaluate_every", 100, "Evaluate model on dev set after this many steps (default: 100)") tf.flags.DEFINE_integer("checkpoint_every", 100, "Save model after this many steps (default: 100)") tf.flags.DEFINE_integer("num_checkpoints", 5, "Number of checkpoints to store (default: 5)") tf.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement") tf.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices") FLAGS = tf.flags.FLAGS FLAGS._parse_flags() print("\nParameters:") for attr, value in sorted(FLAGS.__flags.items()): print("{}={}".format(attr.upper(), value)) print("") # Data Preparation # ================================================== # Load data print("Loading data...") x_text, y = data_helpers.load_data_and_labels(FLAGS.positive_data_file, FLAGS.negative_data_file) # Build vocabulary max_document_length = max([len(x.split(" ")) for x in x_text]) vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length) x = np.array(list(vocab_processor.fit_transform(x_text))) # Randomly shuffle data np.random.seed(10) shuffle_indices = np.random.permutation(np.arange(len(y))) x_shuffled = x[shuffle_indices] y_shuffled = y[shuffle_indices] # Split train/test set # TODO: This is very crude, should use cross-validation dev_sample_index = -1 * int(FLAGS.dev_sample_percentage * float(len(y))) x_train, x_dev = x_shuffled[:dev_sample_index], x_shuffled[dev_sample_index:] y_train, y_dev = y_shuffled[:dev_sample_index], y_shuffled[dev_sample_index:] print("Vocabulary Size: {:d}".format(len(vocab_processor.vocabulary_))) print("Train/Dev split: {:d}/{:d}".format(len(y_train), len(y_dev))) # Training # ================================================== with tf.Graph().as_default(): session_conf = tf.ConfigProto( allow_soft_placement=FLAGS.allow_soft_placement, log_device_placement=FLAGS.log_device_placement) sess = tf.Session(config=session_conf) with sess.as_default(): cnn = TextCNN( sequence_length=x_train.shape[1], num_classes=y_train.shape[1], vocab_size=len(vocab_processor.vocabulary_), embedding_size=FLAGS.embedding_dim, filter_sizes=list(map(int, FLAGS.filter_sizes.split(","))), num_filters=FLAGS.num_filters, l2_reg_lambda=FLAGS.l2_reg_lambda) # Define Training procedure global_step = tf.Variable(0, name="global_step", trainable=False) optimizer = tf.train.AdamOptimizer(1e-3) grads_and_vars = optimizer.compute_gradients(cnn.loss) train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step) # Keep track of gradient values and sparsity (optional) grad_summaries = [] for g, v in grads_and_vars: if g is not None: grad_hist_summary = tf.summary.histogram("{}/grad/hist".format(v.name), g) sparsity_summary = tf.summary.scalar("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g)) grad_summaries.append(grad_hist_summary) grad_summaries.append(sparsity_summary) grad_summaries_merged = tf.summary.merge(grad_summaries) # Output directory for models and summaries timestamp = str(int(time.time())) out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", timestamp)) print("Writing to {}\n".format(out_dir)) # Summaries for loss and accuracy loss_summary = tf.summary.scalar("loss", cnn.loss) acc_summary = tf.summary.scalar("accuracy", cnn.accuracy) # Train Summaries train_summary_op = tf.summary.merge([loss_summary, acc_summary, grad_summaries_merged]) train_summary_dir = os.path.join(out_dir, "summaries", "train") train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph) # Dev summaries dev_summary_op = tf.summary.merge([loss_summary, acc_summary]) dev_summary_dir = os.path.join(out_dir, "summaries", "dev") dev_summary_writer = tf.summary.FileWriter(dev_summary_dir, sess.graph) # Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints")) checkpoint_prefix = os.path.join(checkpoint_dir, "model") if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints) # Write vocabulary vocab_processor.save(os.path.join(out_dir, "vocab")) # Initialize all variables sess.run(tf.global_variables_initializer()) def train_step(x_batch, y_batch): """ A single training step """ feed_dict = { cnn.input_x: x_batch, cnn.input_y: y_batch, cnn.dropout_keep_prob: FLAGS.dropout_keep_prob } _, step, summaries, loss, accuracy = sess.run( [train_op, global_step, train_summary_op, cnn.loss, cnn.accuracy], feed_dict) time_str = datetime.datetime.now().isoformat() print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy)) train_summary_writer.add_summary(summaries, step) def dev_step(x_batch, y_batch, writer=None): """ Evaluates model on a dev set """ feed_dict = { cnn.input_x: x_batch, cnn.input_y: y_batch, cnn.dropout_keep_prob: 1.0 } step, summaries, loss, accuracy = sess.run( [global_step, dev_summary_op, cnn.loss, cnn.accuracy], feed_dict) time_str = datetime.datetime.now().isoformat() print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy)) if writer: writer.add_summary(summaries, step) # Generate batches batches = data_helpers.batch_iter( list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs) # Training loop. For each batch... for batch in batches: x_batch, y_batch = zip(*batch) train_step(x_batch, y_batch) current_step = tf.train.global_step(sess, global_step) if current_step % FLAGS.evaluate_every == 0: print("\nEvaluation:") dev_step(x_dev, y_dev, writer=dev_summary_writer) print("") if current_step % FLAGS.checkpoint_every == 0: path = saver.save(sess, checkpoint_prefix, global_step=current_step) print("Saved model checkpoint to {}\n".format(path)) --相关问题--:

相关推荐

最新推荐

recommend-type

一文读懂目标检测:R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD.doc

一文读懂目标检测:R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD。传统的目标检测算法、候选区域/窗 + 深度学习分类
recommend-type

基于CNN-LSTM的太阳能光伏组件故障诊断研究

提出一种基于卷积神经网络-长短期记忆模型(Convolutional Neural Networks-Long Short Term Memory,CNN-LSTM)的深度学习诊断模型,利用电站原有设备就可完成检测任务。首先提出了一种依据电流值的组件故障分类方式...
recommend-type

使用卷积神经网络(CNN)做人脸识别的示例代码

主要介绍了使用卷积神经网络(CNN)做人脸识别的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

在Pytorch中使用Mask R-CNN进行实例分割操作

主要介绍了在Pytorch中使用Mask R-CNN进行实例分割操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

info-center source defatult

这是一个 Cisco IOS 命令,用于配置 Info Center 默认源。Info Center 是 Cisco 设备的日志记录和报告工具,可以用于收集和查看设备的事件、警报和错误信息。该命令用于配置 Info Center 默认源,即设备的默认日志记录和报告服务器。在命令行界面中输入该命令后,可以使用其他命令来配置默认源的 IP 地址、端口号和协议等参数。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依