输出表达式的值:1/1!-1/3!+1/5!-1/7!+...+(-1)n+1/(2n-1)!
时间: 2023-10-27 16:30:37 浏览: 107
表达式的值
这是一个交替级数,可以使用莫尔定理进行求和。
根据莫尔定理,交替级数的和等于其正项和与负项和之差的绝对值,也就是:
S = |sum(1/odd!)-sum(1/even!)|
其中,odd 表示奇数,even 表示偶数。
现在我们来计算正项和和负项和:
sum(1/odd!) = 1 - 1/3! + 1/5! - 1/7! + ... + (-1)^(n-1)/(2n-1)!
sum(1/even!) = 1/2! - 1/4! + 1/6! - 1/8! + ... + (-1)^n/(2n)!
我们可以将这两个和式相加并化简,得到:
S = 1 - 1/2! + 1/3! - 1/4! + ... + (-1)^(n-1)/(2n-1)! - (-1)^n/(2n)!
现在我们来举个例子,假设 n=3:
S = 1 - 1/2! + 1/3! - 1/4! + 1/5! - 1/6!
将每一项代入计算器计算,得到:
S = 0.78333...
所以,当 n=3 时,该表达式的值约为 0.78333。
由于该表达式是一个无穷级数,所以我们无法计算其精确值。但是,我们可以通过增加 n 的值来逼近其值。
阅读全文