1、使用mlp实现手写数据集识别,并输出精确度。2、使用pca方法对手写数据集降维。3、使用降维后的数据再次训练mlp 并输出精确度,帮我写一个满足这个条件的代码
时间: 2024-11-27 08:20:11 浏览: 53
在Python中,我们可以使用`sklearn`库来实现这个过程,这里是一个简化的示例,假设我们有MNIST手写数字数据集:
```python
# 导入所需的库
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
from sklearn.decomposition import PCA
from sklearn.metrics import accuracy_score
# 1. 加载手写数字数据
mnist = fetch_openml('mnist_784')
X, y = mnist['data'], mnist['target']
# 数据预处理(归一化)
X = X / 255.
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 2. 使用PCA降维
pca = PCA(n_components=10) # 可以调整降维后的维度
X_train_pca = pca.fit_transform(X_train)
X_test_pca = pca.transform(X_test)
# 3. 训练MLP模型(先在原数据上训练)
mlp = MLPClassifier(hidden_layer_sizes=(100,), max_iter=1000) # 配置MLP参数
mlp.fit(X_train, y_train)
y_pred_initial = mlp.predict(X_test)
# 输出原始模型的精度
initial_accuracy = accuracy_score(y_test, y_pred_initial)
print(f"原始MLP模型精度: {initial_accuracy * 100:.2f}%")
# 再次训练MLP在降维后的数据上
mlp.fit(X_train_pca, y_train)
y_pred_pca = mlp.predict(X_test_pca)
# 输出降维后模型的精度
reduced_accuracy = accuracy_score(y_test, y_pred_pca)
print(f"降维后MLP模型精度: {reduced_accuracy * 100:.2f}%")
# 相关问题--
1. 降维对识别精度有何影响?
2. 如何选择PCA的成分数量?
3. 这种方法是否适用于其他类型的机器学习任务?"
```
请注意,这只是一个基础示例,实际应用中可能需要调整参数、数据预处理步骤以及更复杂的模型结构。此外,由于计算量较大,完整运行这段代码可能需要一些时间。
阅读全文
相关推荐


















