两个pd.DataFrame按照列拼接
时间: 2023-02-07 11:22:34 浏览: 298
可以使用 `pd.concat()` 函数来拼接两个 DataFrame。例如:
```
df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
'B': ['B0', 'B1', 'B2', 'B3'],
'C': ['C0', 'C1', 'C2', 'C3'],
'D': ['D0', 'D1', 'D2', 'D3']},
index=[0, 1, 2, 3])
df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
'B': ['B4', 'B5', 'B6', 'B7'],
'C': ['C4', 'C5', 'C6', 'C7'],
'D': ['D4', 'D5', 'D6', 'D7']},
index=[4, 5, 6, 7])
result = pd.concat([df1, df2])
print(result)
```
输出:
```
A B C D
0 A0 B0 C0 D0
1 A1 B1 C1 D1
2 A2 B2 C2 D2
3 A3 B3 C3 D3
4 A4 B4 C4 D4
5 A5 B5 C5 D5
6 A6 B6 C6 D6
7 A7 B7 C7 D7
```
注意,如果两个 DataFrame 有相同的列名,则拼接后的结果会有多个重名的列。可以使用 `ignore_index` 参数来忽略索引,从而避免重名的列。例如:
```
result = pd.concat([df1, df2], ignore_index=True)
print(result)
```
输出:
```
A B C D
0 A0 B0 C0 D0
1 A1 B1 C1 D1
2 A2 B2 C2 D2
3 A3 B3 C3 D3
4 A4 B4 C4 D4
5 A5 B5 C5 D5
6 A6 B6 C6 D6
7 A7 B7 C7 D7
```
还可以使用 `axis` 参数来指定拼接的方向。例如,如果将
阅读全文