用tensorflow搭建A2C算法并实现gym中的打砖块游戏
时间: 2024-03-17 18:41:54 浏览: 135
好的,以下是用TensorFlow搭建A2C算法并实现gym中的打砖块游戏的步骤:
1. 导入库
```python
import numpy as np
import tensorflow as tf
import gym
```
2. 定义Actor-Critic网络模型
```python
class ActorCritic(tf.keras.Model):
def __init__(self, num_actions):
super(ActorCritic, self).__init__()
self.common = tf.keras.layers.Dense(32, activation='relu')
self.actor = tf.keras.layers.Dense(num_actions, activation='softmax')
self.critic = tf.keras.layers.Dense(1)
def call(self, inputs):
x = self.common(inputs)
return self.actor(x), self.critic(x)
```
该网络模型包含一个共享层和两个分支层,分别用于输出动作概率和状态值。共享层接收环境状态作为输入,经过计算后输出一个向量,分别供两个分支层使用。动作概率分支层使用softmax激活函数输出一个概率分布,以决定在给定状态下采取哪个动作。状态值分支层使用线性激活函数输出一个标量,以估计在给定状态下采取动作的期望回报。
3. 定义A2C算法
```python
class A2C:
def __init__(self, env, gamma=0.99, alpha=0.0001):
self.env = env
self.gamma = gamma
self.alpha = alpha
self.model = ActorCritic(env.action_space.n)
self.optimizer = tf.keras.optimizers.Adam(learning_rate=alpha)
def update(self, state, action, reward, next_state, done):
state = np.reshape(state, [1, -1])
next_state = np.reshape(next_state, [1, -1])
with tf.GradientTape() as tape:
# 计算当前状态的动作概率和状态值
actor_probs, critic_value = self.model(state)
# 计算选择的动作的log概率
log_prob = tf.math.log(actor_probs[0, action])
# 计算TD误差
if done:
td_error = reward - critic_value
else:
next_actor_probs, next_critic_value = self.model(next_state)
td_error = reward + self.gamma * next_critic_value - critic_value
# 计算Actor和Critic的损失函数
actor_loss = -log_prob * td_error
critic_loss = tf.keras.losses.mean_squared_error(reward + self.gamma * next_critic_value, critic_value)
loss = actor_loss + critic_loss
# 计算梯度并更新网络参数
gradients = tape.gradient(loss, self.model.trainable_variables)
self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables))
```
该A2C算法包含一个Actor-Critic网络模型和一个优化器。它的update方法接收当前状态、选择的动作、即时奖励、下一个状态和done标志作为输入,然后根据A2C算法计算Actor和Critic的损失函数,并使用梯度下降法更新网络参数。
4. 训练A2C算法
```python
env = gym.make('Breakout-v0')
a2c = A2C(env)
total_episodes = 1000
max_steps_per_episode = 10000
for episode in range(total_episodes):
state = env.reset()
episode_reward = 0
for step in range(max_steps_per_episode):
# 选择动作
actor_probs, _ = a2c.model(np.reshape(state, [1, -1]))
action = np.random.choice(env.action_space.n, p=actor_probs.numpy()[0])
# 执行动作并观察环境
next_state, reward, done, _ = env.step(action)
episode_reward += reward
# 更新A2C算法
a2c.update(state, action, reward, next_state, done)
if done:
break
state = next_state
print("Episode {}: Reward = {}".format(episode + 1, episode_reward))
```
在这个训练循环中,我们首先使用env.reset()初始化游戏状态,并在每个时间步中选择一个动作并执行它。然后,我们观察环境并计算即时奖励,更新A2C算法,直到游戏结束。在每个episode结束时,我们输出总奖励。
5. 运行游戏
```python
from gym.wrappers import Monitor
env = gym.make('Breakout-v0')
env = Monitor(env, './video', force=True)
state = env.reset()
done = False
while not done:
actor_probs, _ = a2c.model(np.reshape(state, [1, -1]))
action = np.argmax(actor_probs.numpy())
next_state, _, done, _ = env.step(action)
state = next_state
env.close()
```
最后,我们可以使用gym.wrappers.Monitor包装器来录制游戏视频,并在每个时间步中选择Actor-Critic网络模型输出的最大概率动作。
阅读全文