import numpy as np import matplotlib.pyplot as plt plt.rcParams["font.sans-serif"]=["SimHei"] plt.rcParams["axes.unicode_minus"]=False data=np.random.randint(40,101,(1000,)) bins=[40,60,70,80,90,100] plt.hist( data, bins=bins, align="mid", histtype='bar', rwidth=0.3, color='r', hatch='/',) h_1 = c1.sum() plt.text(50,h_1,s='不及格:'+'{}'.format(h_1),ha='center') h_2 = c2.sum() plt.text(65,h_2,s='及格:'+'{}'.format(h_2),ha='center') h_3 = c3.sum() plt.text(75,h_3,s='中等:'+'{}'.format(h_3),ha='center') h_4 = c4.sum() plt.text(85,h_4,s='良好:'+'{}'.format(h_4),ha='center') h_5 = c5.sum() plt.text(95,h_4,s='优秀:'+'{}'.format(h_5),ha='center') plt.title("成绩统计直方图") plt.xlabel("成绩区间") plt.xticks(bins) plt.ylabel("数量") plt.show()
时间: 2024-01-13 11:02:51 浏览: 84
这段代码使用了Python中的numpy和matplotlib库,生成了一个成绩统计直方图。其中,np.random.randint函数用于生成随机的成绩数据,bins定义了成绩区间,hist函数用于绘制直方图。代码中使用了text函数添加了每个区间的数量标签,设置了标题、坐标轴标签和刻度。最后使用show函数展示了图形。
相关问题
import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus']=False %matplotlib inline
这段代码主要是进行Python数据分析所需要引入的常用库的导入和设置matplotlib图表显示中文的字体和解决负号显示问题,同时使用%matplotlib inline命令设置图表以内嵌形式显示在notebook页面中。其中,numpy是Python中处理科学计算的一个重要库,pandas是Python中用于数据分析的库,seaborn是基于matplotlib的数据可视化库,matplotlib是Python中常用的绘图库。
import numpy as np import pandas as pd from tqdm import tqdm#进度条设置 import matplotlib.pyplot as plt from pylab import * import matplotlib; matplotlib.use('TkAgg') mpl.rcParams['font.sans-serif'] = ['SimHei'] mpl.rcParams['axes.unicode_minus'] = False
这段代码是用于导入一些常用的Python库,并且设置一些参数,例如使用进度条、中文显示、字体等等。其中,numpy和pandas库是用于数据处理的常用库,tqdm库是用于显示进度条的库,matplotlib和pylab库是用于数据可视化的常用库。如果你要进行数据处理和可视化的话,这些库都是非常有用的。
阅读全文