运行zed2的rosrun image_view image_view image:=/aruco_single_zed/result时,显示报[aruco_single_zed-1] process has died [pid 12381, exit code -11,

时间: 2024-04-18 19:30:26 浏览: 33
这个错误提示表明进程异常终止,退出码为-11。这通常是由于程序运行时出现了段错误(Segmentation Fault)引起的。 Segmentation Fault是一种内存访问错误,它表示程序试图访问无效的内存地址。这可能是由于以下原因之一导致的: 1. 程序中存在bug,例如指针未正确初始化或指向无效的内存地址。 2. 内存溢出,即程序试图访问超出其分配的内存范围。 3. 依赖库或驱动程序的问题。 要解决此问题,你可以尝试以下方法: 1. 检查代码:首先确保你的代码没有逻辑错误或指针问题。仔细检查相关的指针初始化和内存访问操作,确保它们正确无误。 2. 更新依赖库:检查是否有最新的依赖库或驱动程序可用,并进行更新。有时,旧版本的库可能存在一些已知的问题,通过更新可以解决此类问题。 3. 调试程序:你可以使用调试工具(如gdb)来跟踪程序执行过程中的错误。通过在出错的位置设置断点,并逐步执行代码,可以帮助你找到导致Segmentation Fault的原因。 4. 查看日志:如果有可用的日志文件,查看其中的错误信息可能会提供更多线索。你可以检查ROS运行日志,以了解更多有关进程异常终止的详细信息。 如果以上方法仍然无法解决问题,你可以尝试搜索相关错误信息,或向ROS社区寻求帮助。他们可能能够提供更具体的解决方案或指导。
相关问题

[aruco_single_zed-1] process has died [pid 85062, exit code -11, cmd /home/orin/catkin_ws/devel/lib/aruco_ros/single /camera_info:=/zed2/zed_node/right/camera_info /image:=/zed2/zed_node/right/image_rect_color __name:=aruco_single_zed __log:=/home/orin/.ros/log/0dfedc94-1fe1-11ee-b489-48b02ddcd41b/aruco_single_zed-1.log]. log file: /home/orin/.ros/log/0dfedc94-1fe1-11ee-b489-48b02ddcd41b/aruco_single_zed-1*.log all processes on machine have died, roslaunch will exit shutting down processing monitor... ... shutting down processing monitor complete done

这个错误提示表明 `aruco_single_zed` 进程在运行过程中发生了异常,并且进程被意外终止。错误代码 `-11` 通常表示段错误 (Segmentation fault),这可能是由于访问无效的内存地址导致的。 要解决这个问题,你可以尝试以下几个步骤: 1. 检查你的代码和参数配置是否正确。确保你使用的是正确的相机信息和图像话题。 2. 检查你的环境是否正确安装了相应的依赖项。确保你已经正确安装了 `aruco` 和 `aruco_ros` 包,并且它们与你的系统和ROS版本兼容。 3. 检查日志文件 `/home/orin/.ros/log/0dfedc94-1fe1-11ee-b489-48b02ddcd41b/aruco_single_zed-1*.log`,查看是否有更详细的错误信息。日志文件可能会提供有关引发错误的具体原因的线索。 4. 如果以上步骤都没有解决问题,可以尝试重新编译和安装 `aruco_ros` 包,确保它与你的系统和依赖项兼容。 如果问题仍然存在,我建议在相关的ROS或aruco_ros社区中寻求帮助,以便其他有经验的开发者能够提供更具体的指导。

用aruco_ros标定zed2时出现[aruco_single_zed-1] process has died [pid 12381, exit code -11, cmd /home/orin/catkin_ws/develb/aruco_ros/single /camera_info:=/zed2/zed_node/right/camera_info /image:=/zed2/zed_node/right/image_rect_color __name:=aruco_single_zed __log:=/home/orin/.ros/log/37972712-2060-11ee-a022-48b02ddcd41b/aruco_single_zed-1.log]. log file: /home/orin/.ros/log/37972712-2060-11ee-a022-48b02ddcd41b/aruco_single_zed-1*.log all processes on machine have died, roslaunch will exit shutting down processing monitor... ... shutting down processing monitor complete done,如何解决

这个错误可能是由于一些问题导致ARUCO_ROS节点崩溃而引起的。以下是一些可能的解决方法: 1. 检查硬件连接:确保ZED2相机正确连接并供电。确保USB连接稳定,没有松动或断开。 2. 检查相机驱动程序和ROS包版本:确保你使用的ZED SDK和ZED ROS Wrapper与ARUCO_ROS兼容。尝试更新或降级相机驱动程序和ROS包,以确保版本匹配。 3. 检查相机和ROS节点参数:检查启动ARUCO_ROS节点时的参数是否正确设置,特别是相机信息和图像话题的名称。确保这些参数与你的系统配置相匹配。 4. 检查系统资源:如果你的系统资源(如内存、处理器等)不足,可能会导致节点崩溃。尝试关闭其他占用资源的程序或增加系统资源以解决此问题。 5. 查看日志文件:根据错误提示中提供的日志文件路径,查看详细的错误信息。日志文件可能会提供更多关于崩溃原因的线索。尝试分析日志文件以确定问题的根本原因。 如果上述方法无法解决问题,你可能需要进一步调试或寻求ARUCO_ROS和ZED2相机相关论坛或支持渠道的帮助。

相关推荐

最新推荐

recommend-type

ZED-F9P_ProductSummary_(UBX-17005151).pdf

The ZED-F9P positioning module features the u-blox F9 receiver platform, which provides multi-band GNSS to high-volume industrial applications in a compact form factor.
recommend-type

一些双目相机的总结比较(realsense,mynteye,zedmini)

一些双目相机的总结比较(realsense,mynteye,zedmini)Realsense D435ZED MINI小觅 Mynt Eye D系列 Realsense D435 Realsense是我最早使用的双目深度相机,我认为realsense最大的优点就是它是市面上各种功能最齐全...
recommend-type

机器学习作业-基于python实现的垃圾邮件分类源码(高分项目)

<项目介绍> 机器学习作业-基于python实现的垃圾邮件分类源码(高分项目) - 不懂运行,下载完可以私聊问,可远程教学 该资源内项目源码是个人的毕设,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 --------
recommend-type

Dijkstra算法:探索最短路径的数学之美.pdf

Dijkstra算法,全名为Dijkstra's Shortest Path Algorithm,是一种用于寻找加权图中最短路径的算法。它由荷兰计算机科学家Edsger W. Dijkstra在1959年提出,并迅速成为图论和网络理论中最重要的算法之一。本文将探讨Dijkstra算法的起源、原理、应用以及它在解决实际问题中的重要性。 一、Dijkstra算法的起源 Dijkstra算法最初是为了解决荷兰阿姆斯特丹的电话交换网络中的路径规划问题而开发的。在那个时代,电话网络的规模迅速扩大,传统的手动路径规划方法已经无法满足需求。Dijkstra意识到,通过数学方法可以高效地解决这类问题,于是他开始着手研究并最终提出了Dijkstra算法。这个算法不仅在电话网络中得到了应用,而且很快在交通、物流、计算机网络等众多领域展现了其强大的实用价值。
recommend-type

2011全国软件专业人才设计与开发大赛java集训试题及答案.doc

2011全国软件专业人才设计与开发大赛java集训试题及答案.doc
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。