state_dict = torch.load(args.loadckpt) File "/root/miniconda3/lib/python3.8/site-packages/torch/serialization.py", line 579, in load with _open_file_like(f, 'rb') as opened_file: File "/root/miniconda3/lib/python3.8/site-packages/torch/seriali
时间: 2023-08-10 20:08:17 浏览: 264
zed.py", line 230, in _open_file_like return _open_file(f.name, mode) FileNotFoundError: [Errno 2] No such file or directory: 'args.loadckpt'
根据错误提示,程序无法找到指定的文件 args.loadckpt,可能是文件名或路径错误导致的。建议检查一下代码中是否正确指定了文件名和路径,并确认文件是否存在。
相关问题
dataset train metas: 27097 dataset test metas: 7546 loading model True Traceback (most recent call last): File "/root/miniconda3/lib/python3.8/site-packages/torch/serialization.py", line 308, in _check_seekable f.seek(f.tell()) AttributeError: 'bool' object has no attribute 'seek' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "train.py", line 105, in <module> state_dict = torch.load(args.loadckpt) File "/root/miniconda3/lib/python3.8/site-packages/torch/serialization.py", line 579, in load with _open_file_like(f, 'rb') as opened_file: File "/root/miniconda3/lib/python3.8/site-packages/torch/serialization.py", line 235, in _open_file_like return _open_buffer_reader(name_or_buffer) File "/root/miniconda3/lib/python3.8/site-packages/torch/serialization.py", line 220, in __init__ _check_seekable(buffer) File "/root/miniconda3/lib/python3.8/site-packages/torch/serialization.py", line 311, in _check_seekable raise_err_msg(["seek", "tell"], e) File "/root/miniconda3/lib/python3.8/site-packages/torch/serialization.py", line 304, in raise_err_msg raise type(e)(msg) AttributeError: 'bool' object has no attribute 'seek'. You can only torch.load from a file that is seekable. Please pre-load the data into a buffer like io.BytesIO and try to load from it instead.
这个错误信息表明在尝试加载模型检查点时出现了问题。具体来说,`torch.load` 方法无法从指定的文件中加载数据,因为该文件不是一个可寻址的文件对象。
根据错误信息,“'bool' object has no attribute 'seek'”这句话提示了问题的关键。这个错误通常是由于传递给 `torch.load` 方法的参数不是一个有效的文件名或文件对象。在这种情况下,`args.loadckpt` 参数的值可能是一个布尔值,而不是一个有效的文件对象。
为了解决这个问题,可以尝试使用 `io.BytesIO` 类将数据加载到内存缓冲区中,并从缓冲区中加载数据,而不是直接从文件中加载数据。具体来说,可以使用以下代码替换加载模型检查点的代码:
```
import io
if args.loadckpt:
with open(args.loadckpt, 'rb') as f:
buffer = io.BytesIO(f.read())
state_dict = torch.load(buffer)
else:
state_dict = None
```
这将打开指定的文件,将其内容读取到内存缓冲区中,并从缓冲区中加载数据。这样就可以避免由于文件不可寻址而导致的错误。
Traceback (most recent call last): File "/home/boyang/Beatrix/defenses/STRIP/STRIP_our.py", line 327, in <module> main() File "/home/boyang/Beatrix/defenses/STRIP/STRIP_our.py", line 278, in main list_entropy_trojan, list_entropy_benign = strip(opt, mode) File "/home/boyang/Beatrix/defenses/STRIP/STRIP_our.py", line 198, in strip state_dict = torch.load(opt.ckpt_path) File "/opt/anaconda3/envs/ndg/lib/python3.9/site-packages/torch/serialization.py", line 789, in load return _load(opened_zipfile, map_location, pickle_module, **pickle_load_args) File "/opt/anaconda3/envs/ndg/lib/python3.9/site-packages/torch/serialization.py", line 1131, in _load result = unpickler.load() File "/opt/anaconda3/envs/ndg/lib/python3.9/site-packages/torch/serialization.py", line 1101, in persistent_load load_tensor(dtype, nbytes, key, _maybe_decode_ascii(location)) File "/opt/anaconda3/envs/ndg/lib/python3.9/site-packages/torch/serialization.py", line 1083, in load_tensor wrap_storage=restore_location(storage, location), File "/opt/anaconda3/envs/ndg/lib/python3.9/site-packages/torch/serialization.py", line 215, in default_restore_location result = fn(storage, location) File "/opt/anaconda3/envs/ndg/lib/python3.9/site-packages/torch/serialization.py", line 187, in _cuda_deserialize return obj.cuda(device) File "/opt/anaconda3/envs/ndg/lib/python3.9/site-packages/torch/_utils.py", line 80, in _cuda untyped_storage = torch.UntypedStorage( RuntimeError: CUDA error: out of memory
这是一个Python的异常追踪(Traceback),它显示了在执行程序时出现的错误。根据给出的信息,看起来出现了一个关于CUDA内存不足的错误,这个错误之前我们已经讨论过了。
要解决这个问题,你可以尝试以下几个步骤:
1. 检查你的CUDA设备是否有足够的内存来加载模型。你可以使用 `torch.cuda.get_device_properties(device_id)` 函数来获取CUDA设备的属性,包括内存大小。
2. 如果你的CUDA设备内存不足,可以尝试减少模型的大小,或者使用更小的批量大小。
3. 你还可以尝试使用 `torch.load(opt.ckpt_path, map_location='cpu')` 来将模型加载到CPU上,而不是CUDA设备上。这可能会减少对CUDA内存的需求。
4. 如果你的模型很大,并且无法适应你的CUDA设备内存,那么你可能需要考虑使用更大的显卡或者分布式训练等策略。
另外,请确保你已经按照之前给出的建议设置了环境变量 `CUDA_LAUNCH_BLOCKING=1`,以便获取更准确的错误信息。
如果以上步骤都没有解决问题,那么可能需要更详细的错误信息或者代码的上下文来进行进一步的排查。
阅读全文