Traceback (most recent call last): File "D:/LPRNet_Pytorch-master/LPRNet_Pytorch-master/train_LPRNet.py", line 268, in <module> train() File "D:/LPRNet_Pytorch-master/LPRNet_Pytorch-master/train_LPRNet.py", line 107, in train lprnet.load_state_dict(torch.load(args.pretrained_model)) File "D:\Anaconda\lib\site-packages\torch\serialization.py", line 608, in load return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args) File "D:\Anaconda\lib\site-packages\torch\serialization.py", line 787, in _legacy_load result = unpickler.load() File "D:\Anaconda\lib\site-packages\torch\serialization.py", line 743, in persistent_load deserialized_objects[root_key] = restore_location(obj, location) File "D:\Anaconda\lib\site-packages\torch\serialization.py", line 175, in default_restore_location result = fn(storage, location) File "D:\Anaconda\lib\site-packages\torch\serialization.py", line 151, in _cuda_deserialize device = validate_cuda_device(location) File "D:\Anaconda\lib\site-packages\torch\serialization.py", line 135, in validate_cuda_device raise RuntimeError('Attempting to deserialize object on a CUDA ' RuntimeError: Attempting to deserialize object on a CUDA device but torch.cuda.is_available() is False. If you are running on a CPU-only machine, please use torch.load with map_location=torch.device('cpu') to map your storages to the CPU.
时间: 2023-08-27 08:05:30 浏览: 196
这个错误是因为你在尝试从一个CUDA设备上加载模型,但是当前的机器上没有GPU。你需要使用`torch.load`函数时传入`map_location=torch.device('cpu')`的参数来将模型加载到CPU上。 例如:
```python
lprnet.load_state_dict(torch.load(args.pretrained_model, map_location=torch.device('cpu')))
```
相关问题
Traceback (most recent call last): File "D:/LPRNet_Pytorch-master/LPRNet_Pytorch-master/train_LPRNet.py", line 268, in <module> train() File "D:/LPRNet_Pytorch-master/LPRNet_Pytorch-master/train_LPRNet.py", line 102, in train lprnet.to(device) File "D:\Anaconda\lib\site-packages\torch\nn\modules\module.py", line 899, in to return self._apply(convert) File "D:\Anaconda\lib\site-packages\torch\nn\modules\module.py", line 570, in _apply module._apply(fn) File "D:\Anaconda\lib\site-packages\torch\nn\modules\module.py", line 570, in _apply module._apply(fn) File "D:\Anaconda\lib\site-packages\torch\nn\modules\module.py", line 593, in _apply param_applied = fn(param) File "D:\Anaconda\lib\site-packages\torch\nn\modules\module.py", line 897, in convert return t.to(device, dtype if t.is_floating_point() or t.is_complex() else None, non_blocking) File "D:\Anaconda\lib\site-packages\torch\cuda\__init__.py", line 208, in _lazy_init raise AssertionError("Torch not compiled with CUDA enabled") AssertionError: Torch not compiled with CUDA enabled
这个错误是因为你的torch没有启用CUDA。在训练LPRNet时需要使用GPU加速,因此需要启用CUDA。你可以检查一下你的torch是否安装了CUDA版本,并且在代码中使用了正确的版本。如果你的torch没有安装CUDA版本,你需要重新安装一个CUDA版本的torch。如果你已经安装了CUDA版本的torch,你可以尝试在代码中添加以下代码来启用CUDA:
```
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
```
然后在将模型转移到设备时使用:
```
lprnet.to(device)
```
这应该会解决你的问题。
Traceback (most recent call last): File "D:/SRP/faster-rcnn-pytorch-master/faster-rcnn-pytorch-master/train.py", line 249, in <module> pretrained_dict = torch.load(model_path, map_location = device) File "D:\anaconda\anzhuan\envs\pytorch\lib\site-packages\torch\serialization.py", line 791, in load with _open_file_like(f, 'rb') as opened_file: File "D:\anaconda\anzhuan\envs\pytorch\lib\site-packages\torch\serialization.py", line 271, in _open_file_like return _open_file(name_or_buffer, mode) File "D:\anaconda\anzhuan\envs\pytorch\lib\site-packages\torch\serialization.py", line 252, in __init__ super().__init__(open(name, mode)) OSError: [Errno 22] Invalid argument: 'logs\\loss_2023_07_24_12_06_40\x08est_epoch_weights.pth' Process finished with exit code 1
这个错误是由于文件路径中包含了无效的字符导致的。具体来说,路径中的`\x08`字符是无效的,可能是由于编码问题或者其他原因导致的。
为了解决这个问题,你可以尝试以下几个步骤:
1. 检查文件路径中是否包含了其他无效字符。确保路径中的所有字符都是有效的,并且没有特殊字符或错误的转义字符。
2. 检查文件路径是否正确。确保文件路径指向的是一个存在的文件,并且路径中的文件名和扩展名是正确的。
3. 如果文件路径中包含了特殊字符或无效字符,可以尝试修改文件路径,将无效字符替换为有效字符或者完全删除无效字符。
4. 如果文件路径中包含了非ASCII字符,可以尝试使用Unicode编码表示这些字符,或者将文件路径保存为UTF-8编码格式。
希望这些步骤能够帮助你解决这个问题。如果问题仍然存在,请提供更多的信息,以便我能够给出更具体的建议。
阅读全文