用python表示lagrange插值多项式的表达式(不带入数值计算)
时间: 2023-05-29 09:07:42 浏览: 99
假设有n个已知点(x1,y1),(x2,y2),...,(xn,yn),则Lagrange插值多项式的表达式为:
L(x) = Σ(i=1 to n) yi * li(x)
其中,li(x)为Lagrange基函数,定义为:
li(x) = Π(j=1 to n, j≠i) (x - xj) / (xi - xj)
即除了xi以外的所有已知点与x的距离的乘积除以xi与这些点的距离的乘积。
相关问题
用python代码表示lagrange插值多项式的表达式(不带入数值计算)
假设给定的数据点为 $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$,则拉格朗日插值多项式的表达式为:
$$
L(x) = \sum_{i=0}^n y_i\prod_{\substack{j=0 \\ j\neq i}}^n \frac{x-x_j}{x_i-x_j}
$$
以下是用 Python 代码表示拉格朗日插值多项式的表达式:
```python
def lagrange_interpolation(x, y):
n = len(x)
L = 0
for i in range(n):
Li = y[i]
for j in range(n):
if i != j:
Li *= (x - x[j]) / (x[i] - x[j])
L += Li
return L
```
其中,`x` 是数据点的横坐标,`y` 是数据点的纵坐标,`n` 是数据点的个数,`L` 是拉格朗日插值多项式的值。循环遍历数据点,计算每个插值基函数的值并相加,最终得到插值多项式的表达式。
lagrange插值多项式表达式python代码
以下是使用Python编写的Lagrange插值多项式表达式代码:
```
def lagrange(x, y):
n = len(x)
L = 0
for i in range(n):
# 计算Li
Li = 1
for j in range(n):
if i != j:
Li *= (x[i] - x[j]) / (x[i] - x[j])
# 计算L
L += y[i] * Li
return L
```
其中,x和y分别表示已知的插值点的x和y坐标,n表示插值点的数量,L表示Lagrange插值多项式的表达式。在函数中,我们首先通过循环计算每个插值点的Li值,然后将其与对应的y值相乘,并累加到L中。最后返回L的值,即为Lagrange插值多项式的表达式。
使用示例:
```
x = [1, 2, 3, 4, 5]
y = [0, 1, 0, -1, 0]
print(lagrange(x, y))
```
输出结果为:
```
0.0
```
阅读全文
相关推荐














