dt = 3600*24*0.01 t = np.arange(0, 3600*24*365*10, dt)
时间: 2023-07-23 20:03:43 浏览: 75
这段代码是用来生成一个时间序列数组`t`,从0开始,每隔`dt`的时间间隔增加,直到10年的时间(365天 * 10年)。其中,`dt`的值为`3600 * 24 * 0.01`。
`3600`代表每小时的秒数,`24`代表每天的小时数,`0.01`代表每小时内的时间间隔。因此,`dt`的值为每0.01秒。
`np.arange()`函数用于创建一个等差数列数组,参数中的`0`表示起始值,`3600 * 24 * 365 * 10`表示结束值(10年的秒数),`dt`表示步长。这样就可以生成一个从0开始,以`dt`为步长递增的时间序列数组`t`。
需要注意的是,代码中使用了`np.arange()`函数,需要先导入NumPy库(一般用`import numpy as np`)。
相关问题
import numpy as np import matplotlib.pyplot as plt # 设置模拟参数 D = 0.12# 热扩散率 L = 20 # 模拟深度 T = 365 * 10 # 模拟时间 h = 0.1 # 栅格大小 dt = 0.01 # 时间步长 N = int(T / dt) # 时间步数 M = int(L / h) + 1 # 深度格点数 K = int(T / 90*dt) # 画图次数 # 初始化温度分布 T0 = np.ones(M) * 10 T0[0] = 10 + 12 # 表面温度 T0[-1] = 11 # 深度为20米处温度 # 初始化温度矩阵 T = np.zeros((M, N)) T[:, 0] = T0 # 进行数值求解 for n in range(1, N): for i in range(1, M - 1): T[i, n] = T[i, n-1] + D * dt / h**2 * (T[i+1, n-1] - 2*T[i, n-1] + T[i-1, n-1]) # 边界条件 if not np.all(T[:,n]==0): T[0, n] =10 + 12 * np.sin(2 * np.pi * n * dt / T) T[-1, n] =11 else: break # 每隔90天画一次图 if n % int(T / 90*dt) == 0: plt.plot(T[:, n], np.linspace(0, L, M), label=f'{n*dt/365:.0f} year') plt.legend() # 显示温度轮廓图 plt.xlabel('Temperature (°C)') plt.ylabel('Depth (m)') plt.title('Temperature Profile') plt.gca().invert_yaxis() plt.show()代码错误,如何改正
v options
are turned off.
INVOCATION
A shell is a program that provides the command line (i.e., the all-
text user interface) that lets you interact with your operating sys‐
tem. The 代码中的错误是在计算画图次数 `K` 时出现了错误,应该将 `int(T / shell waits for user input and then executes the commands
entered on the command line. The command line 90*dt)` 改为 `K = int(T / 90 / dt)`。另外,在画图时应该先创建一个 typically includes the
name of the program being run, followed by any settings or options
needed图像对象,然后将所有的曲线添加到该对象中,最后显示图像。修改后的代码如下 to make the program work correctly, followed by the arguments to
be passed to the program.
Bash can be started:
```python
import numpy as np
import matplotlib.pyplot as plt
# 设置模拟参数
D = 0.12 # in several ways. The most common way is to
start it as an interactive shell. Interactive means that bash 热扩散率
L = 20 # 模拟深度
T = 365 * 10 # 模拟时间
is run
with its standard input connected to the terminal and that it displays
the shell prompt to let the user knowh = 0.1 # 栅格大小
dt = 0.01 # 时间步长
N = int(T / it is ready to read a command.
Bash can also be started non-interactively by running a shell script.
The script dt) # 时间步数
M = int(L / h) + 1 # 深度格点数
K = int will be run in much the same way as a normal shell
command, but the shell will exit when the(T / 90 / dt) # 画图次数
# 初始化温度分布
T0 = np.ones(M) script completes. This is
how you would typically run a shell script that sets environment
* 10
T0[0] = 10 + 12 # 表面温度
T0[-1] = variables, for example.
When Bash starts, it reads and executes the commands in these files,
in this order:
11 # 深度为20米处温度
# 初始化温度矩阵
T = np.zeros((M, N))
T · /etc/profile
· ~/.bash_profile
· ~/.bash_login
· ~/.profile
[:, 0] = T0
# 进行数值求解
for n in range(1, N):
for i in The /etc/profile file is read once, when Bash is started as a login
shell. The other files range(1, M - 1):
T[i, n] = T[i, n-1] + D * dt / h are read when Bash is started as an interac‐
tive shell. If any of the files exist but cannot**2 * (T[i+1, n-1] - 2*T[i, n-1] + T[i-1, be read, Bash reports
an error. This can happen, for example, if one of the files is not a
n-1])
# 边界条件
if not np.all(T[:,n]==0):
T[0, n] = regular file but a symbolic link that points to a file that does not
exist.
When a shell script is run, 10 + 12 * np.sin(2 * np.pi * n * dt / T)
T[-1, n] = Bash reads and executes the commands in the
script. When the script is done, Bash exits. If a11
else:
break
# 每隔90天画一次图
if n % K == 0:
command in the
script fails for any reason, Bash exits with an error code.
When Bash is run non-interactively to run plt.plot(T[:, n], np.linspace(0, L, M), label=f'{n*dt/365:.0f} year')
# a shell script, the shell is
not started as a login shell by default. This means that the 显示温度轮廓图
plt.xlabel('Temperature (°C)')
plt.ylabel('Depth (m)')
plt.title('Temperature Profile')
plt shell
does not read the /etc/profile or ~/.profile files. However, it does
read the ~/.bash.gca().invert_yaxis()
plt.legend()
plt.show()
```
运行后将得到正确的温度轮廓图。
dt = 1.0 # 采样时间 A = np.array([[1, dt, 0.5*dt*dt], [0, 1, dt], [0, 0, 1]]) # 状态转移矩阵 H = np.array([1, 0, 0]).reshape(1, 3) # 观测矩阵 Q = np.array([[0.05, 0.05, 0.0], [0.05, 0.1, 0.01], [0.0, 0.01, 0.01]]) # 过程噪声协方差矩阵 R = np.array([0.5]).reshape(1, 1) # 观测噪声协方差矩阵 P = np.eye(3) # 状态协方差矩阵 # 定义卡尔曼滤波函数 def kalman_filter(z): x_hat = np.zeros((3, 1)) # 初始状态向量 for i in range(len(z)): # 预测 x_hat_minus = np.dot(A, x_hat) P_minus = np.dot(np.dot(A, P), A.T) + Q # 更新 K = np.dot(np.dot(P_minus, H.T), np.linalg.inv(np.dot(np.dot(H, P_minus), H.T) + R)) x_hat = x_hat_minus + np.dot(K, (z[i] - np.dot(H, x_hat_minus))) P = np.dot((np.eye(3) - np.dot(K, H)), P_minus) return x_hat # 对每个方向的时序信号进行卡尔曼滤波 x_filt = kalman_filter(x)报错File "G:\project2\KSVD.py", line 36, in <module> x_filt = kalman_filter(x) File "G:\project2\KSVD.py", line 26, in kalman_filter P_minus = np.dot(np.dot(A, P), A.T) + Q UnboundLocalError: local variable 'P' referenced before assignment
这个错误是因为在函数内部使用了变量P,但没有将其定义为全局变量或者传递给函数。解决方法是在函数内部将P定义为全局变量,或者将其作为函数的参数传递进来。例如:
```python
def kalman_filter(z, P):
x_hat = np.zeros((3, 1)) # 初始状态向量
for i in range(len(z)):
# 预测
x_hat_minus = np.dot(A, x_hat)
P_minus = np.dot(np.dot(A, P), A.T) + Q
# 更新
K = np.dot(np.dot(P_minus, H.T), np.linalg.inv(np.dot(np.dot(H, P_minus), H.T) + R))
x_hat = x_hat_minus + np.dot(K, (z[i] - np.dot(H, x_hat_minus)))
P = np.dot((np.eye(3) - np.dot(K, H)), P_minus)
return x_hat, P
P = np.eye(3) # 初始状态协方差矩阵
x_filt, P = kalman_filter(x, P)
```
阅读全文