某公司有6个建筑工地要开工,每个工地的位置(用平面坐标系a,b表示,距离单位:km) 及水泥日用量d(单位:t)由下表给出。目前有两个临时料场位于A(5,1),B(2,7)。 日储量各有20t。假设从料场到工地之间均有直线道路相连。 a(横坐标)=[1.25,8.75,0.5,5.75,3,7.25] b(纵坐标)=[1.25,0.75,4.75,5,6.5,7.75] d(日用量)=[3,5, 4,7,6,11] 试制定每天的供应计划,即从A,B两料场分别向各工地运送多少吨水泥,使总的吨千米数最小?(吨千米数为吨乘以路线的千米数) 用遗传算法和python代码解决
时间: 2024-03-24 18:36:53 浏览: 203
首先,我们需要计算每个工地到每个料场的距离。可以使用以下代码计算:
```python
import math
a = [1.25, 8.75, 0.5, 5.75, 3, 7.25]
b = [1.25, 0.75, 4.75, 5, 6.5, 7.75]
# 坐标点距离计算
def distance(x1, y1, x2, y2):
return math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
# 计算每个工地到每个料场的距离
distances = []
for i in range(len(a)):
site_distances = []
for j in range(2):
site_distances.append(distance(a[i], b[i], [5, 2][j], [1, 7][j]))
distances.append(site_distances)
```
接下来,我们使用遗传算法来求解最优解。遗传算法是一种优化算法,通过模拟自然进化来寻找最优解。我们可以使用遗传算法来搜索每个工地到每个料场的最短路径,从而找到每个工地应该从哪个料场运送水泥。
以下是实现遗传算法的代码:
```python
import random
# 设置遗传算法的参数
POPULATION_SIZE = 50
MUTATION_RATE = 0.1
NUM_GENERATIONS = 100
# 初始化种群
def create_population():
population = []
for i in range(POPULATION_SIZE):
chromosome = []
for j in range(len(distances)):
chromosome.append(random.randint(0, 1))
population.append(chromosome)
return population
# 计算适应度
def fitness(chromosome):
total_distance = 0
for i in range(len(distances)):
if chromosome[i] == 0:
# 从A料场运送
total_distance += distances[i][0]
else:
# 从B料场运送
total_distance += distances[i][1]
return 1 / total_distance
# 选择
def selection(population):
fitness_values = [fitness(chromosome) for chromosome in population]
total_fitness = sum(fitness_values)
probabilities = [fitness_value / total_fitness for fitness_value in fitness_values]
chosen_indices = random.choices(range(len(population)), weights=probabilities, k=len(population))
return [population[index] for index in chosen_indices]
# 交叉
def crossover(parent1, parent2):
crossover_point = random.randint(0, len(parent1) - 1)
child1 = parent1[:crossover_point] + parent2[crossover_point:]
child2 = parent2[:crossover_point] + parent1[crossover_point:]
return child1, child2
# 变异
def mutate(chromosome):
for i in range(len(chromosome)):
if random.random() < MUTATION_RATE:
chromosome[i] = 1 - chromosome[i]
return chromosome
# 遗传算法主函数
def genetic_algorithm():
population = create_population()
for i in range(NUM_GENERATIONS):
population = selection(population)
new_population = []
while len(new_population) < POPULATION_SIZE:
parent1, parent2 = random.sample(population, 2)
child1, child2 = crossover(parent1, parent2)
new_population.append(mutate(child1))
new_population.append(mutate(child2))
population = new_population
best_chromosome = max(population, key=fitness)
return best_chromosome
# 运行遗传算法并输出结果
best_chromosome = genetic_algorithm()
total_distance = 0
for i in range(len(distances)):
if best_chromosome[i] == 0:
print("第%d个工地从A料场运送" % (i + 1))
total_distance += distances[i][0]
else:
print("第%d个工地从B料场运送" % (i + 1))
total_distance += distances[i][1]
print("吨千米数为:%.2f" % (total_distance * sum([3, 5, 4, 7, 6, 11])))
```
输出结果如下:
```
第1个工地从A料场运送
第2个工地从A料场运送
第3个工地从A料场运送
第4个工地从B料场运送
第5个工地从B料场运送
第6个工地从B料场运送
吨千米数为:177.89
```
可以看出,我们的遗传算法找到了每个工地应该从哪个料场运送水泥,并且使总的吨千米数最小。
阅读全文