用r语言写程序:Calculate polygenic scores with both the marginnal and joint models on testing data. And compare their performance under low and high h^2
时间: 2024-03-05 19:54:49 浏览: 73
以下是一个用R语言写的计算多基因得分(polygenic scores)并分别采用边缘和联合模型在测试数据上评估其性能的示例程序。同时还会比较在低和高h^2情况下的表现,供您参考:
```R
# Load required packages
library(rrBLUP)
library(plyr)
# Load training and testing data
train_data <- read.csv("train_data.csv")
test_data <- read.csv("test_data.csv")
# Define the phenotype and genotypes
pheno <- train_data$pheno
geno <- train_data[,4:ncol(train_data)]
# Define the relationship matrix
A <- A.mat(geno, n.core=4)
# Fit the marginal and joint models
marginal_model <- kin.blup(pheno, A, method="average")
joint_model <- mixed.solve(pheno ~ A, random=1)
# Calculate the polygenic scores
marginal_scores <- as.numeric(marginal_model$pred[test_data[,1]])
joint_scores <- as.numeric(joint_model$u[test_data[,1]])
# Calculate the correlation between true and predicted phenotypes
marginal_corr <- cor(test_data$pheno, marginal_scores)
joint_corr <- cor(test_data$pheno, joint_scores)
# Compare the performance under low and high h^2
h2_range <- seq(0.1, 0.9, by=0.1)
results <- data.frame(h2=NULL, marginal=NULL, joint=NULL)
for (h2 in h2_range) {
# Simulate a new phenotype with the specified h2
sim_pheno <- sim.giv(h2, A=A, K=A, n=1)
# Calculate the polygenic scores
marginal_scores <- as.numeric(marginal_model$pred[sim_pheno$id])
joint_scores <- as.numeric(joint_model$u[sim_pheno$id])
# Calculate the correlation between true and predicted phenotypes
marginal_corr <- cor(sim_pheno$pheno, marginal_scores)
joint_corr <- cor(sim_pheno$pheno, joint_scores)
# Save the results
results <- rbind(results, data.frame(h2=h2, marginal=marginal_corr, joint=joint_corr))
}
# Plot the results
library(ggplot2)
ggplot(results, aes(x=h2)) +
geom_line(aes(y=marginal, color="Marginal")) +
geom_line(aes(y=joint, color="Joint")) +
scale_color_manual(values=c("blue", "red")) +
labs(x="h2", y="Correlation") +
theme_classic()
```
请注意:这只是一个示例程序,您需要根据您的具体数据和研究问题进行修改和调整。
阅读全文