data_json = json.loads(r.text) data = data_json['data']
时间: 2024-04-19 09:26:24 浏览: 231
这段代码是用来解析一个 HTTP 响应中的 JSON 数据,并提取出其中的 'data' 字段。首先,`json.loads(r.text)` 将响应的文本内容转换为 JSON 对象,并将其赋值给 `data_json` 变量。接下来,通过 `data_json['data']` 从 JSON 对象中获取名为 'data' 的字段,并将其赋值给变量 `data`。这样,你就可以进一步处理 `data` 变量中的数据了。
相关问题
url = "https://buff.163.com/api/market/goods/sell_order?game=csgo&goods_id=%goods_id%&page_num=1" def get_buff_low_price (buff_cookie,goods_id,float_rank): print(goods_id) # 定义请求头,包含 API Key headers = { "User-Agent": "Mozilla/5.0", "Accept-Language": "en-US,en;q=0.5", } headers['Cookie'] = buff_cookie base_url="https://buff.163.com/api/market/goods/sell_order?game=csgo&goods_id=%goods_id%&page_num=1" base_url= base_url.replace('%goods_id%',str(goods_id)) res_url='' if(float_rank=='luemo_1'): res_url = '&sort_by=default&mode=&allow_tradable_cooldown=1&min_paintwear=0.07&max_paintwear=0.08' elif(float_rank=='luemo_2'): res_url = '&sort_by=default&mode=&allow_tradable_cooldown=1&min_paintwear=0.08&max_paintwear=0.09' else: res_url = '' url =base_url+res_url #print(url) # 发送 GET 请求,获取 API 返回结果 while True: # 一直循环,知道访问站点成功 try: # 以下except都是用来捕获当requests请求出现异常时, # 通过捕获然后等待网络情况的变化,以此来保护程序的不间断运行 response = requests.get(url, headers=headers, timeout=20) break except requests.exceptions.ConnectionError: print('ConnectionError -- please wait 3 seconds') time.sleep(3) except requests.exceptions.ChunkedEncodingError: print('ChunkedEncodingError -- please wait 3 seconds') time.sleep(3) except: print('Unfortunitely -- An Unknow Error Happened, Please wait 3 seconds') time.sleep(3) # 解析返回结果 json_data = json.loads(response.text) #print(json_data) buff_price = json_data['data']['items'][0]['price'] return buff_price print(buff_price) print(json_data)
感谢您提供完整的代码片段。根据您的代码,问题出在了最后两行。您在执行 `return buff_price` 之后就直接打印了 `buff_price` 和 `json_data`,但实际上这两行代码永远不会被执行,因为在 `return` 之后函数就会立即退出了。
请将 `print(buff_price)` 和 `print(json_data)` 这两行代码放到 `return` 语句之前,这样就可以在返回 `buff_price` 之前打印出这两个变量的值了。
if "test" in self.path: self.inference = False if self.config.token_type: pad, cls, sep = '[PAD]', '[CLS]', '[SEP]' else: pad, cls, sep = '<pad>', '<cls>', '<sep>' contens = [] with open(self.path, 'r', encoding='utf-8') as f: data_list = f.readlines() for row_data in tqdm(data_list): row_json_data = json.loads(row_data) token_id_full = [] fact = row_json_data['fact'] if self.inference == False: labels = row_json_data['meta']['accusation'] fact_tokens = self.tokenizer.tokenize(fact) len_fact_tokens = len(fact_tokens) if len_fact_tokens <= self.max_seq_len-2: fact_tokens_ = [cls] + fact_tokens + [sep] else: fact_tokens_ = [cls] + fact_tokens[:self.max_seq_len-2] + [sep]
这段代码是用来处理输入数据的,主要是将输入数据转换为模型可以处理的格式。首先根据传入的参数判断是否是测试模式,然后根据配置文件中的token_type参数选择相应的标记符号。接着打开传入的文件,逐行读取数据。对于每一行数据,首先获取事实部分的文本,并将其使用tokenizer进行分词。如果文本长度小于等于max_seq_len-2,就在前后添加[CLS]和[SEP]标记符号,否则只保留前max_seq_len-2个token,然后同样在前后添加标记符号。最后将处理后的文本转化为token_id_full,并将其和标签(如果不是测试模式)一起加入到contens列表中。
阅读全文