降维吴恩达机器学习笔记

时间: 2023-07-31 14:07:03 浏览: 59
降维是机器学习中常用的技术,用于减少特征空间的维度。吴恩达在他的机器学习课程中也提到了降维的概念。 在降维中,有两种常见的方法:特征选择和特征提取。 特征选择是指从原始特征中选择一个子集作为新的特征子空间。这个选择通常是基于某种评估准则,比如相关性、信息增益等。常见的特征选择算法有前向选择、后向选择和递归特征消除等。 特征提取则是通过某种线性或非线性变换,将原始特征映射到一个低维子空间中。这个变换通常是通过主成分分析(PCA)等方法来实现的。特征提取可以保留数据中的主要信息,并且还可以去除冗余和噪声。 在实际应用中,我们需要根据具体问题和数据集的特点来选择适当的降维方法。同时,需要注意降维可能会导致信息损失,因此需要权衡降维带来的好处和代价。 以上是关于降维的简要介绍,希望能对你有所帮助!如果你还有其他问题,可以继续提问。
相关问题

吴恩达机器学习笔记2022

对于"吴恩达机器学习笔记2022"的问题,我没有在引用的内容中找到具体的相关信息。根据我所了解到的是,吴恩达是一位著名的机器学习专家,他在机器学习领域有很高的声誉,并且他的机器学习课程非常受欢迎。他的机器学习课程涵盖了从基础概念到实践应用的广泛内容,可以帮助学生建立起对机器学习的扎实理解并掌握相关的技能。如果您对具体的吴恩达的机器学习笔记2022有进一步的问题, 请提供更多的细节,我将尽力为您解答。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [【机器学习 吴恩达】2022课程笔记(持续更新)](https://blog.csdn.net/weixin_45837404/article/details/128709041)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [2022吴恩达机器学习课程学习笔记(第一课第一周)](https://blog.csdn.net/Yang0114_/article/details/127400605)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

吴恩达机器学习笔记pdf

吴恩达的机器学习笔记是一门非常受欢迎的机器学习课程,涵盖了机器学习的基本概念和算法。在这门课程中,吴恩达介绍了机器学习的定义和分类。他将机器学习定义为给予计算机学习能力的领域,并介绍了监督学习和无监督学习这两种主要的学习算法。监督学习是指通过给计算机提供样本数据和对应的标签来教导计算机如何完成任务,而无监督学习则是让计算机自己进行学习,没有明确的标签来指导。在这门课程中,吴恩达还介绍了梯度下降算法,并讲解了如何应用梯度下降算法解决不同的机器学习问题。通过学习这门课程,人们可以获得对机器学习的基本理解,并学会应用机器学习算法解决实际问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span>

相关推荐

很抱歉,我无法回答你的问题。因为你提供的引用内容中没有包含关于吴恩达机器学习jupyter的信息。请提供更多相关的引用内容,我将尽力为你解答。 #### 引用[.reference_title] - *1* [吴恩达老师DeepLearning系列课程最详细学习笔记之23—Jupyter Ipython笔记本的快速指南](https://blog.csdn.net/james9668/article/details/125039331)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [吴恩达机器学习anaconda中配置虚拟环境(Tensorflow)(jupyter notebook)](https://blog.csdn.net/qq_43669538/article/details/127952466)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [吴恩达机器学习课程笔记+代码实现(22)Python实现聚类(Programming Exercise 7.1)](https://blog.csdn.net/ziqu5721/article/details/88563077)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
吴恩达机器学习ex2是指吴恩达在其机器学习课程中提供的第二个编程作业,即逻辑回归(Logistic Regression)的实现。这个实现是基于Matlab/Octave完成的。在这个作业中,学生需要根据给定的数据集实现逻辑回归算法,并进行模型训练和预测。 参考黄海广的笔记中的代码示例展示了一种使用Python实现的方法。首先,导入必要的库,包括numpy、pandas、matplotlib和scipy.optimize。然后,根据数据集的特点,初始化变量。代码中cols变量表示数据集的列数,X2表示除了第一列外的所有列的数据,y2表示第一列的数据。接下来,将X2和y2转换为数组类型,并创建一个长度为11的零数组theta2。最后,设定正则化参数为1,计算代价和梯度。 关于具体算法实现的细节,包括代价函数(costreg)和梯度函数(gradientReg),可以参考实际代码。123 #### 引用[.reference_title] - *1* [【机器学习】 吴恩达机器学习作业 ex2逻辑回归 Matlab实现](https://blog.csdn.net/m0_52427832/article/details/125358227)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [吴恩达《机器学习》课后测试Ex2:逻辑回归(详细Python代码注解)](https://blog.csdn.net/qq_44577070/article/details/120644061)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
吴恩达的机器学习课程中的ex3任务是关于手写数字识别的。在这个任务中,我们使用了一个包含5000个手写数字训练示例的数据集(ex3data1.mat)。每个训练示例都是一个20×20像素的灰度图像,被展开成了一个400维的向量。这些训练示例被存储在数据矩阵X中,其中每一行代表一个手写数字图像的训练示例。 此外,训练集的标签被存储在一个5000维的向量y中。为了与Octave/MATLAB索引兼容,我们把数字零映射为值10,并将数字1至9按其自然顺序标记为1至9。 在导入数据并初始化之后,我们可以开始使用这个数据集进行手写数字识别的任务了。123 #### 引用[.reference_title] - *1* *2* [【吴恩达】机器学习作业 ex3data1 -- 多分类逻辑回归(Python)](https://blog.csdn.net/calmdownn/article/details/125992325)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [吴恩达机器学习笔记---ex3(python实现)](https://blog.csdn.net/qq_45604750/article/details/107628153)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
sklearn是一个Python机器学习库,其中包含了许多用于机器学习和数据挖掘的工具和算法。吴恩达是一位著名的机器学习专家,他在机器学习领域有着丰富的经验和知识。他在一些课程中介绍了机器学习的基本概念和算法,并提到了一些使用sklearn库进行机器学习的实例和案例。他的课程包括《Introduction to machine learning with scikit-learn》、《林轩田机器学习》和《李宏毅机器学习》等。 在这些课程中,吴恩达也提到了一些机器学习中常用的算法和方法,例如正规方程法。正规方程法是一种在数据量不大时比较适用的方法,它不需要进行归一化。在多变量线性回归中,正规方程法可以用来求解最优的模型参数。 如果你想使用sklearn来训练逻辑回归模型,你可以按照以下步骤进行操作: 1. 导入sklearn库以及需要的数据集: python import numpy as np from sklearn.linear_model import LogisticRegression X = np.array([[0.5, 1.5], [1,1], [1.5, 0.5], [3, 0.5], [2, 2], [1, 2.5]]) y = np.array([0, 0, 0, 1, 1, 1]) 2. 创建并拟合逻辑回归模型: python lr_model = LogisticRegression() lr_model.fit(X, y) 这样你就可以使用sklearn库中的逻辑回归模型进行训练并得到模型参数。请注意,这只是一个简单的示例,实际应用中可能需要更多的数据预处理和模型调优步骤。123 #### 引用[.reference_title] - *1* [DJH-ML:机器学习记录,Apachecn,sklearn,维基百科](https://download.csdn.net/download/weixin_42126677/18303041)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [吴恩达机器学习课后作业ex1(python实现)](https://blog.csdn.net/weixin_55037029/article/details/127620509)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [【吴恩达机器学习】初识sklearn函数](https://blog.csdn.net/qq_21506765/article/details/126061868)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]

最新推荐

分布式高并发.pdf

分布式高并发

基于多峰先验分布的深度生成模型的分布外检测

基于多峰先验分布的深度生成模型的似然估计的分布外检测鸭井亮、小林圭日本庆应义塾大学鹿井亮st@keio.jp,kei@math.keio.ac.jp摘要现代机器学习系统可能会表现出不期望的和不可预测的行为,以响应分布外的输入。因此,应用分布外检测来解决这个问题是安全AI的一个活跃子领域概率密度估计是一种流行的低维数据分布外检测方法。然而,对于高维数据,最近的工作报告称,深度生成模型可以将更高的可能性分配给分布外数据,而不是训练数据。我们提出了一种新的方法来检测分布外的输入,使用具有多峰先验分布的深度生成模型。我们的实验结果表明,我们在Fashion-MNIST上训练的模型成功地将较低的可能性分配给MNIST,并成功地用作分布外检测器。1介绍机器学习领域在包括计算机视觉和自然语言处理的各个领域中然而,现代机器学习系统即使对于分

阿里云服务器下载安装jq

根据提供的引用内容,没有找到与阿里云服务器下载安装jq相关的信息。不过,如果您想在阿里云服务器上安装jq,可以按照以下步骤进行操作: 1.使用wget命令下载jq二进制文件: ```shell wget https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64 -O jq ``` 2.将下载的jq文件移动到/usr/local/bin目录下,并添加可执行权限: ```shell sudo mv jq /usr/local/bin/ sudo chmod +x /usr/local/bin/jq ``` 3.检查j

毕业论文java vue springboot mysql 4S店车辆管理系统.docx

包括摘要,背景意义,论文结构安排,开发技术介绍,需求分析,可行性分析,功能分析,业务流程分析,数据库设计,er图,数据字典,数据流图,详细设计,系统截图,测试,总结,致谢,参考文献。

"结构化语言约束下的安全强化学习框架"

使用结构化语言约束指导安全强化学习Bharat Prakash1,Nicholas Waytowich2,Ashwinkumar Ganesan1,Tim Oates1,TinooshMohsenin11马里兰大学,巴尔的摩县(UMBC),2美国陆军研究实验室,摘要强化学习(RL)已经在解决复杂的顺序决策任务中取得了成功,当一个定义良好的奖励函数可用时。对于在现实世界中行动的代理,这些奖励函数需要非常仔细地设计,以确保代理以安全的方式行动。当这些智能体需要与人类互动并在这种环境中执行任务时,尤其如此。然而,手工制作这样的奖励函数通常需要专门的专业知识,并且很难随着任务复杂性而扩展。这导致了强化学习中长期存在的问题,即奖励稀疏性,其中稀疏或不明确的奖励函数会减慢学习过程,并导致次优策略和不安全行为。 更糟糕的是,对于RL代理必须执行的每个任务,通常需要调整或重新指定奖励函数。另一�

mac redis 的安装

以下是在Mac上安装Redis的步骤: 1. 打开终端并输入以下命令以安装Homebrew: ```shell /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)" ``` 2. 安装Redis: ```shell brew install redis ``` 3. 启动Redis服务: ```shell brew services start redis ``` 4. 验证Redis是否已成功安装并正在运行: ```shell redis-cli ping

计算机应用基础Excel题库--.doc

计算机应用根底Excel题库 一.填空 1.Excel工作表的行坐标范围是〔 〕。 2.对数据清单中的数据进行排序时,可按某一字段进行排序,也可按多个字段进行排序 ,在按多个字段进行排序时称为〔 〕。 3.对数据清单中的数据进行排序时,对每一个字段还可以指定〔 〕。 4.Excel97共提供了3类运算符,即算术运算符.〔 〕 和字符运算符。 5.在Excel中有3种地址引用,即相对地址引用.绝对地址引用和混合地址引用。在公式. 函数.区域的指定及单元格的指定中,最常用的一种地址引用是〔 〕。 6.在Excel 工作表中,在某单元格的编辑区输入"〔20〕〞,单元格内将显示( ) 7.在Excel中用来计算平均值的函数是( )。 8.Excel中单元格中的文字是( 〕对齐,数字是( )对齐。 9.Excel2021工作表中,日期型数据"2008年12月21日"的正确输入形式是( )。 10.Excel中,文件的扩展名是( )。 11.在Excel工作表的单元格E5中有公式"=E3+$E$2",将其复制到F5,那么F5单元格中的 公式为( )。 12.在Excel中,可按需拆分窗口,一张工作表最多拆分为 ( )个窗口。 13.Excel中,单元格的引用包括绝对引用和( ) 引用。 中,函数可以使用预先定义好的语法对数据进行计算,一个函数包括两个局部,〔 〕和( )。 15.在Excel中,每一张工作表中共有( )〔行〕×256〔列〕个单元格。 16.在Excel工作表的某单元格内输入数字字符串"3997",正确的输入方式是〔 〕。 17.在Excel工作薄中,sheet1工作表第6行第F列单元格应表示为( )。 18.在Excel工作表中,单元格区域C3:E4所包含的单元格个数是( )。 19.如果单元格F5中输入的是=$D5,将其复制到D6中去,那么D6中的内容是〔 〕。 Excel中,每一张工作表中共有65536〔行〕×〔 〕〔列〕个单元格。 21.在Excel工作表中,单元格区域D2:E4所包含的单元格个数是( )。 22.Excel在默认情况下,单元格中的文本靠( )对齐,数字靠( )对齐。 23.修改公式时,选择要修改的单元格后,按( )键将其删除,然后再输入正确的公式内容即可完成修改。 24.( )是Excel中预定义的公式。函数 25.数据的筛选有两种方式:( )和〔 〕。 26.在创立分类汇总之前,应先对要分类汇总的数据进行( )。 27.某一单元格中公式表示为$A2,这属于( )引用。 28.Excel中的精确调整单元格行高可以通过〔 〕中的"行〞命令来完成调整。 29.在Excel工作簿中,同时选择多个相邻的工作表,可以在按住( )键的同时,依次单击各个工作表的标签。 30.在Excel中有3种地址引用,即相对地址引用、绝对地址引用和混合地址引用。在公式 、函数、区域的指定及单元格的指定中,最常用的一种地址引用是〔 〕。 31.对数据清单中的数据进行排序时,可按某一字段进行排序,也可按多个字段进行排序 ,在按多个字段进行排序时称为〔 〕。多重排序 32.Excel工作表的行坐标范围是( 〕。1-65536 二.单项选择题 1.Excel工作表中,最多有〔〕列。B A.65536 B.256 C.254 D.128 2.在单元格中输入数字字符串100083〔邮政编码〕时,应输入〔〕。C A.100083 B."100083〞 C. 100083   D.'100083 3.把单元格指针移到AZ1000的最简单方法是〔〕。C A.拖动滚动条 B.按+〈AZ1000〉键 C.在名称框输入AZ1000,并按回车键 D.先用+〈 〉键移到AZ列,再用+〈 〉键移到1000行 4.用〔〕,使该单元格显示0.3。D A.6/20 C.="6/20〞 B. "6/20〞 D.="6/20〞 5.一个Excel工作簿文件在第一次存盘时不必键入扩展名,Excel自动以〔B〕作为其扩展 名。 A. .WK1 B. .XLS C. .XCL D. .DOC 6.在Excel中,使用公式输入数据,一般在公式前需要加〔〕A A.= B.单引号 C.$ D.任意符号 7.在公式中输入"=$C1+E$1〞是〔〕C A.相对引用 B.绝对引用 C.混合引用 D.任意引用 8.以下序列中,不能直接利用自动填充快速输入的是〔 〕B A.星期一.星期二.星期三 .…… B.第一类.第二类.第三类.…… C.甲.乙.丙.…… D.Mon.Tue.Wed.…… 9.工作表中K16单元格中为公式"=F6×$D$4〞,在第3行处插入一行,那么插入后K7单元 格中的公式为〔 〕A A.=F7*$D$5 B.=F7*$D$4 C

基于PC机资源的分布式计算系统中相干任务求解方法及其优势

© 2014 Anatoly Kalyaev,Iakov Korovin.出版社:Elsevier B.V.由美国应用科学研究所负责选择和/或同行评审可在www.sciencedirect.com在线获取ScienceDirectAASRI Procedia 9(2014)131 - 1372014年AASRI电路与信号处理会议(CSP 2014)利用空闲PC机解决相干任务Anatoly Kalyaeva *,Iakov Korovina南方联邦大学多处理器计算系统科学研究所,2,塔甘罗格347922,俄罗斯摘要本文提出了一种基于PC机资源的分布式计算系统中相干任务求解的新方法。这些资源的参数是动态变化的,这使得它很难在分布式计算中的应用。该方法采用多智能体方法,通过智能体的主动控制,实现了分布式计算系统中个人计算机的有效利用,并通过智能体之间的交互,分散调度任务求解过程。为了解决每一个传入的连贯任务,系统的代理联合成社区,这使得它更容易调度和执行计算。该方法的主要优点是降低了分布式�

ERROR 1045 (28000): Access denied for user 'daizong'@'localhost' (using password: NO) mac

这个错误提示表明您正在尝试使用用户名'daizong'在本地主机上连接到MySQL服务器,但是没有提供密码。这可能是因为您在连接字符串中没有指定密码,或者您提供的密码不正确。要解决此问题,您可以尝试以下几个步骤: 1. 确保您在连接字符串中提供了正确的密码。例如,如果您的密码是'password',则您的连接字符串应该类似于以下内容: ``` mysql -u daizong -ppassword ``` 2. 如果您确定密码正确,但仍然无法连接,请尝试重置MySQL root用户的密码。您可以按照以下步骤操作: - 停止MySQL服务器 ```

毕业论文springboot297毕业生实习与就业管理系统的设计与实现论文.doc

包括摘要,背景意义,论文结构安排,开发技术介绍,需求分析,可行性分析,功能分析,业务流程分析,数据库设计,er图,数据字典,数据流图,详细设计,系统截图,测试,总结,致谢,参考文献。