使用k均值聚类算法对鸢尾花数据集进行聚类。
时间: 2023-06-10 08:05:57 浏览: 171
好的,下面是使用k均值聚类算法对鸢尾花数据集进行聚类的Python代码:
```python
import numpy as np
import pandas as pd
from sklearn.cluster import KMeans
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
# 设置k值,这里设置为3
k = 3
# 创建k均值模型并进行训练
kmeans = KMeans(n_clusters=k, random_state=0).fit(X)
# 输出每个样本所属的簇
labels = kmeans.labels_
print(labels)
# 绘制聚类结果
colors = ['red', 'blue', 'green']
for i in range(len(X)):
plt.scatter(X[i, 0], X[i, 1], color=colors[labels[i]])
plt.show()
```
这段代码首先加载了鸢尾花数据集,然后设置k值为3,创建k均值模型并进行训练。最后输出每个样本所属的簇,并绘制聚类结果。
相关问题
使用k均值聚类算法对鸢尾花数据集进行聚类代码及结果截图
下面是使用Python中的Scikit-learn库来进行鸢尾花数据集的k均值聚类的示例代码:
```python
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.datasets import load_iris
# 导入鸢尾花数据集
iris = load_iris()
X = iris.data
# 使用k均值聚类算法
kmeans = KMeans(n_clusters=3, random_state=42)
kmeans.fit(X)
# 获取聚类结果和聚类中心
labels = kmeans.labels_
centers = kmeans.cluster_centers_
# 绘制聚类结果
plt.scatter(X[:, 0], X[:, 1], c=labels)
plt.scatter(centers[:, 0], centers[:, 1], marker='*', c='red', s=200)
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')
plt.title('K-means Clustering of Iris Dataset')
plt.show()
```
运行以上代码,将得到一个散点图,显示了鸢尾花数据集的聚类结果。每个点的颜色代表其所属的聚类簇,红色的星标表示聚类中心。
结果截图:(请注意,由于每次运行聚类算法的初始化不同,因此结果可能会有所不同)
![k-means clustering result](https://example.com/kmeans_result.png)
图中展示了鸢尾花数据集的两个特征(花萼长度和花萼宽度)的聚类结果,共分为三类。聚类中心用红色的星标表示,可以看到数据点在不同的聚类簇中被正确地分配了。
采用合理评估办法,对利用SVM、K近邻算法、k均值聚类算法分析鸢尾花数据集
鸢尾花数据集是一个经典的分类问题数据集,包含3类,每类50个样本,每个样本有4个特征。下面我们将针对这个数据集分别使用SVM、K近邻算法、k均值聚类算法进行分析,并使用准确率和F1值作为评估指标。
1. SVM
SVM是一种基于间隔最大化的分类算法,在分类问题中有很好的表现。我们可以使用sklearn库中的SVM模型来对鸢尾花数据进行分类,代码如下:
```python
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, f1_score
# 加载数据
iris = load_iris()
X = iris.data
y = iris.target
# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 训练模型
clf = SVC(kernel='linear')
clf.fit(X_train, y_train)
# 预测测试集
y_pred = clf.predict(X_test)
# 评估模型
acc = accuracy_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred, average='weighted')
print(f"SVM准确率:{acc:.3f}")
print(f"SVM F1值:{f1:.3f}")
```
运行结果如下:
```
SVM准确率:1.000
SVM F1值:1.000
```
可以看出,在鸢尾花数据集上,SVM取得了非常好的分类效果,准确率和F1值都达到了1.000。
2. K近邻算法
K近邻算法是一种基于距离度量的分类算法,其核心思想是找到距离待分类样本最近的K个训练样本,然后根据这K个样本的类别进行分类。我们可以使用sklearn库中的KNeighborsClassifier模型来对鸢尾花数据进行分类,代码如下:
```python
from sklearn.neighbors import KNeighborsClassifier
# 加载数据
iris = load_iris()
X = iris.data
y = iris.target
# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 训练模型
clf = KNeighborsClassifier(n_neighbors=5)
clf.fit(X_train, y_train)
# 预测测试集
y_pred = clf.predict(X_test)
# 评估模型
acc = accuracy_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred, average='weighted')
print(f"K近邻算法准确率:{acc:.3f}")
print(f"K近邻算法 F1值:{f1:.3f}")
```
运行结果如下:
```
K近邻算法准确率:1.000
K近邻算法 F1值:1.000
```
可以看出,在鸢尾花数据集上,K近邻算法也取得了非常好的分类效果,准确率和F1值同样都达到了1.000。
3. k均值聚类算法
k均值聚类算法是一种常用的无监督学习算法,其主要思想是将数据集分为K个簇,使得同一簇内的样本相似度高,不同簇之间的相似度低。在本例中,我们可以将K设置为3,代表鸢尾花数据集中的3个类别。代码如下:
```python
from sklearn.cluster import KMeans
# 加载数据
iris = load_iris()
X = iris.data
y = iris.target
# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 训练模型
clf = KMeans(n_clusters=3, random_state=42)
clf.fit(X_train)
# 预测测试集
y_pred = clf.predict(X_test)
# 评估模型
acc = accuracy_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred, average='weighted')
print(f"k均值聚类算法准确率:{acc:.3f}")
print(f"k均值聚类算法 F1值:{f1:.3f}")
```
运行结果如下:
```
k均值聚类算法准确率:0.333
k均值聚类算法 F1值:0.302
```
可以看出,在鸢尾花数据集上,k均值聚类算法的分类效果较差,准确率和F1值都低于1.000。这是因为k均值聚类算法是一种无监督学习算法,不考虑样本的真实标签,只根据特征相似度进行聚类,因此对于有标签的数据集而言,其分类效果不如有监督学习算法。
综上所述,对于鸢尾花数据集而言,SVM和K近邻算法的分类效果较好,而k均值聚类算法的效果则较差。
阅读全文