lambda函数中用if else
时间: 2023-11-04 16:06:03 浏览: 128
语句如何写?
lambda 函数中可以使用三元运算符(ternary operator)来代替 if else 语句。例如:
```
lambda x: True if x > 0 else False
```
上述 lambda 函数会判断输入的参数 x 是否大于0,若是则返回 True,否则返回 False。
相关问题
lambda函数中用if elif else
语句应该怎么写?例如,如果x>5,返回x+1,如果x<0,返回0,否则返回x。
在lambda函数中,可以使用以下语法来使用if elif else语句:
lambda x: x + 1 if x > 5 else (0 if x < 0 else x)
在这个lambda函数中,如果x大于5,则返回x加1,否则,如果x小于0,则返回0,否则返回x本身。
import randomimport multiprocessing# 定义目标函数,这里以一个简单的二维函数为例def target_func(x, y): return x ** 2 + y ** 2# 定义爬山算法,这里使用随机爬山算法def hill_climbing(start_point): current_point = start_point current_value = target_func(*current_point) while True: next_points = [(current_point[0] + random.uniform(-1, 1), current_point[1] + random.uniform(-1, 1)) for _ in range(10)] next_values = [target_func(*p) for p in next_points] next_point, next_value = min(zip(next_points, next_values), key=lambda x: x[1]) if next_value < current_value: current_point = next_point current_value = next_value else: break return current_point, current_value# 定义并行爬山函数def parallel_hill_climbing(num_workers, num_iterations, start_points): global_best_point, global_best_value = None, float('inf') pool = multiprocessing.Pool(num_workers) for i in range(num_iterations): results = pool.map(hill_climbing, start_points) best_point, best_value = min(results, key=lambda x: x[1]) if best_value < global_best_value: global_best_point, global_best_value = best_point, best_value start_points = [global_best_point] * len(start_points) return global_best_point, global_best_value# 测试代码if __name__ == '__main__': num_workers = 4 num_iterations = 10 start_points = [(random.uniform(-10, 10), random.uniform(-10, 10)) for _ in range(num_workers)] best_point, best_value = parallel_hill_climbing(num_workers, num_iterations, start_points) print(f'Best point: {best_point}, best value: {best_value}')
importimport randomimport random是import random是Pythonimport random是Python中import random是Python中用import random是Python中用来import random是Python中用来导import random是Python中用来导入import random是Python中用来导入随import random是Python中用来导入随机import random是Python中用来导入随机数import random是Python中用来导入随机数生成import random是Python中用来导入随机数生成模import random是Python中用来导入随机数生成模块import random是Python中用来导入随机数生成模块的import random是Python中用来导入随机数生成模块的语import random是Python中用来导入随机数生成模块的语句import random是Python中用来导入随机数生成模块的语句,import random是Python中用来导入随机数生成模块的语句,而import random是Python中用来导入随机数生成模块的语句,而importimport random是Python中用来导入随机数生成模块的语句,而import multiprocessingimport random是Python中用来导入随机数生成模块的语句,而import multiprocessing则import random是Python中用来导入随机数生成模块的语句,而import multiprocessing则是import random是Python中用来导入随机数生成模块的语句,而import multiprocessing则是导import random是Python中用来导入随机数生成模块的语句,而import multiprocessing则是导入import random是Python中用来导入随机数生成模块的语句,而import multiprocessing则是导入用import random是Python中用来导入随机数生成模块的语句,而import multiprocessing则是导入用于import random是Python中用来导入随机数生成模块的语句,而import multiprocessing则是导入用于多import random是Python中用来导入随机数生成模块的语句,而import multiprocessing则是导入用于多进import random是Python中用来导入随机数生成模块的语句,而import multiprocessing则是导入用于多进程import random是Python中用来导入随机数生成模块的语句,而import multiprocessing则是导入用于多进程处理import random是Python中用来导入随机数生成模块的语句,而import multiprocessing则是导入用于多进程处理的import random是Python中用来导入随机数生成模块的语句,而import multiprocessing则是导入用于多进程处理的模import random是Python中用来导入随机数生成模块的语句,而import multiprocessing则是导入用于多进程处理的模块import random是Python中用来导入随机数生成模块的语句,而import multiprocessing则是导入用于多进程处理的模块的import random是Python中用来导入随机数生成模块的语句,而import multiprocessing则是导入用于多进程处理的模块的语import random是Python中用来导入随机数生成模块的语句,而import multiprocessing则是导入用于多进程处理的模块的语句import random是Python中用来导入随机数生成模块的语句,而import multiprocessing则是导入用于多进程处理的模块的语句。
阅读全文