Pandas数据分组分析实战教程:从分组运算到聚合函数,全面掌握分组技巧

发布时间: 2024-07-20 22:19:52 阅读量: 40 订阅数: 47
![Pandas数据分组分析实战教程:从分组运算到聚合函数,全面掌握分组技巧](https://img-blog.csdnimg.cn/20201225101602133.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2Nsb255MQ==,size_16,color_FFFFFF,t_70) # 1. Pandas数据分组基础 Pandas数据分组是将数据帧中的数据根据指定的分组键进行分组,从而对每个分组进行操作和分析。 ### 分组操作:groupby()函数 groupby()函数是Pandas中用于分组操作的核心函数。其基本用法为: ```python df.groupby(key) ``` 其中,`key`可以是列名、列表或函数。分组后,数据帧将被拆分成多个分组对象,每个分组对象代表一个分组键下的数据。 # 2. 分组运算和聚合函数 ### 2.1 分组运算:groupby()函数详解 #### 2.1.1 基本用法和参数介绍 `groupby()`函数是Pandas中用于分组运算的核心函数,其基本用法如下: ```python df.groupby(by=column_name) ``` 其中: * `df`:需要进行分组运算的数据框 * `by`:分组依据的列名 例如,对`df`数据框按`column_name`列进行分组: ```python df_grouped = df.groupby(by='column_name') ``` `groupby()`函数还支持多个列作为分组依据,此时需要使用列表或元组指定: ```python df_grouped = df.groupby(by=['column_name1', 'column_name2']) ``` #### 2.1.2 分组后的数据操作 对数据框进行分组后,可以通过`groupby`对象进行各种数据操作,包括: * **迭代分组:**使用`for`循环迭代分组对象,访问每个分组的数据: ```python for group_name, group_data in df_grouped: print(group_name) print(group_data) ``` * **获取分组信息:**使用`groups`属性获取分组信息,返回一个字典,键为分组依据的值,值为分组后的数据索引: ```python group_info = df_grouped.groups ``` * **过滤分组:**使用`filter`方法过滤分组,返回满足条件的分组数据: ```python filtered_groups = df_grouped.filter(lambda x: x['column_name'].mean() > 10) ``` ### 2.2 聚合函数:agg()函数详解 #### 2.2.1 常用聚合函数介绍 Pandas提供了丰富的聚合函数,用于对分组后的数据进行聚合操作,常用函数包括: | 函数 | 描述 | |---|---| | `sum()` | 求和 | | `mean()` | 求平均值 | | `max()` | 求最大值 | | `min()` | 求最小值 | | `count()` | 计数 | | `std()` | 求标准差 | | `var()` | 求方差 | 例如,对`df_grouped`分组数据求每组的平均值: ```python df_grouped['column_name'].mean() ``` #### 2.2.2 多个聚合函数同时使用 `agg()`函数支持同时使用多个聚合函数,返回一个包含多个聚合结果的数据框: ```python df_grouped.agg({'column_name1': ['mean', 'max'], 'column_name2': ['sum', 'count']}) ``` 该代码将返回一个数据框,包含`column_name1`列的平均值和最大值,以及`column_name2`列的和和计数。 **代码块逻辑分析:** ```python # 导入Pandas库 import pandas as pd # 创建一个示例数据框 df = pd.DataFrame({ 'column_name1': [1, 2, 3, 4, 5], 'column_name2': ['a', 'b', 'c', 'd', 'e'] }) # 对数据框按column_name1列进行分组 df_grouped = df.groupby(by='column_name1') # 使用agg()函数对分组后的数据进行聚合操作 result = df_grouped.agg({'column_name1': ['mean', 'max'], 'column_name2': ['sum', ```
corwn 最低0.47元/天 解锁专栏
买1年送3月
点击查看下一篇
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

SW_孙维

开发技术专家
知名科技公司工程师,开发技术领域拥有丰富的工作经验和专业知识。曾负责设计和开发多个复杂的软件系统,涉及到大规模数据处理、分布式系统和高性能计算等方面。
专栏简介
《Pandas库入门宝典》专栏是数据处理领域的权威指南,涵盖了从基础知识到高级技巧的全面内容。专栏以循序渐进的方式介绍了Pandas库,从数据合并、分组分析、可视化到数据类型转换、内存管理和性能优化。通过深入浅出的讲解和丰富的实战案例,专栏帮助读者掌握Pandas库的精髓,提升数据处理能力。无论是数据分析新手还是经验丰富的从业者,本专栏都提供了宝贵的知识和实践指导,助力读者在数据处理领域取得成功。

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

【数据集加载与分析】:Scikit-learn内置数据集探索指南

![Scikit-learn基础概念与常用方法](https://analyticsdrift.com/wp-content/uploads/2021/04/Scikit-learn-free-course-1024x576.jpg) # 1. Scikit-learn数据集简介 数据科学的核心是数据,而高效地处理和分析数据离不开合适的工具和数据集。Scikit-learn,一个广泛应用于Python语言的开源机器学习库,不仅提供了一整套机器学习算法,还内置了多种数据集,为数据科学家进行数据探索和模型验证提供了极大的便利。本章将首先介绍Scikit-learn数据集的基础知识,包括它的起源、

Keras注意力机制:构建理解复杂数据的强大模型

![Keras注意力机制:构建理解复杂数据的强大模型](https://img-blog.csdnimg.cn/direct/ed553376b28447efa2be88bafafdd2e4.png) # 1. 注意力机制在深度学习中的作用 ## 1.1 理解深度学习中的注意力 深度学习通过模仿人脑的信息处理机制,已经取得了巨大的成功。然而,传统深度学习模型在处理长序列数据时常常遇到挑战,如长距离依赖问题和计算资源消耗。注意力机制的提出为解决这些问题提供了一种创新的方法。通过模仿人类的注意力集中过程,这种机制允许模型在处理信息时,更加聚焦于相关数据,从而提高学习效率和准确性。 ## 1.2

从Python脚本到交互式图表:Matplotlib的应用案例,让数据生动起来

![从Python脚本到交互式图表:Matplotlib的应用案例,让数据生动起来](https://opengraph.githubassets.com/3df780276abd0723b8ce60509bdbf04eeaccffc16c072eb13b88329371362633/matplotlib/matplotlib) # 1. Matplotlib的安装与基础配置 在这一章中,我们将首先讨论如何安装Matplotlib,这是一个广泛使用的Python绘图库,它是数据可视化项目中的一个核心工具。我们将介绍适用于各种操作系统的安装方法,并确保读者可以无痛地开始使用Matplotlib

【循环神经网络】:TensorFlow中RNN、LSTM和GRU的实现

![【循环神经网络】:TensorFlow中RNN、LSTM和GRU的实现](https://ucc.alicdn.com/images/user-upload-01/img_convert/f488af97d3ba2386e46a0acdc194c390.png?x-oss-process=image/resize,s_500,m_lfit) # 1. 循环神经网络(RNN)基础 在当今的人工智能领域,循环神经网络(RNN)是处理序列数据的核心技术之一。与传统的全连接网络和卷积网络不同,RNN通过其独特的循环结构,能够处理并记忆序列化信息,这使得它在时间序列分析、语音识别、自然语言处理等多

Pandas数据转换:重塑、融合与数据转换技巧秘籍

![Pandas数据转换:重塑、融合与数据转换技巧秘籍](https://c8j9w8r3.rocketcdn.me/wp-content/uploads/2016/03/pandas_aggregation-1024x409.png) # 1. Pandas数据转换基础 在这一章节中,我们将介绍Pandas库中数据转换的基础知识,为读者搭建理解后续章节内容的基础。首先,我们将快速回顾Pandas库的重要性以及它在数据分析中的核心地位。接下来,我们将探讨数据转换的基本概念,包括数据的筛选、清洗、聚合等操作。然后,逐步深入到不同数据转换场景,对每种操作的实际意义进行详细解读,以及它们如何影响数

NumPy在金融数据分析中的应用:风险模型与预测技术的6大秘籍

![NumPy在金融数据分析中的应用:风险模型与预测技术的6大秘籍](https://d31yv7tlobjzhn.cloudfront.net/imagenes/990/large_planilla-de-excel-de-calculo-de-valor-en-riesgo-simulacion-montecarlo.png) # 1. NumPy基础与金融数据处理 金融数据处理是金融分析的核心,而NumPy作为一个强大的科学计算库,在金融数据处理中扮演着不可或缺的角色。本章首先介绍NumPy的基础知识,然后探讨其在金融数据处理中的应用。 ## 1.1 NumPy基础 NumPy(N

【提高图表信息密度】:Seaborn自定义图例与标签技巧

![【提高图表信息密度】:Seaborn自定义图例与标签技巧](https://www.dataforeverybody.com/wp-content/uploads/2020/11/seaborn_legend_size_font-1024x547.png) # 1. Seaborn图表的简介和基础应用 Seaborn 是一个基于 Matplotlib 的 Python 数据可视化库,它提供了一套高级接口,用于绘制吸引人、信息丰富的统计图形。Seaborn 的设计目的是使其易于探索和理解数据集的结构,特别是对于大型数据集。它特别擅长于展示和分析多变量数据集。 ## 1.1 Seaborn

【概率分布精要】:掌握随机事件的数学规律与数据分析密钥

![【概率分布精要】:掌握随机事件的数学规律与数据分析密钥](https://media.geeksforgeeks.org/wp-content/uploads/20240603172506/uniform-distribution.webp) # 1. 概率分布的基本概念 概率分布是描述随机变量取值规律的数学模型,在统计学和数据分析领域占有核心地位。理解概率分布,首先要了解随机变量的概念,它是指其取值具有不确定性的变量。按照取值的性质,随机变量分为离散型和连续型两种。离散型随机变量可取有限个或可数无限多个值,其概率分布通常用概率质量函数(PMF)来描述;而连续型随机变量则在一定区间内可取

硬件加速在目标检测中的应用:FPGA vs. GPU的性能对比

![目标检测(Object Detection)](https://img-blog.csdnimg.cn/3a600bd4ba594a679b2de23adfbd97f7.png) # 1. 目标检测技术与硬件加速概述 目标检测技术是计算机视觉领域的一项核心技术,它能够识别图像中的感兴趣物体,并对其进行分类与定位。这一过程通常涉及到复杂的算法和大量的计算资源,因此硬件加速成为了提升目标检测性能的关键技术手段。本章将深入探讨目标检测的基本原理,以及硬件加速,特别是FPGA和GPU在目标检测中的作用与优势。 ## 1.1 目标检测技术的演进与重要性 目标检测技术的发展与深度学习的兴起紧密相关

PyTorch超参数调优:专家的5步调优指南

![PyTorch超参数调优:专家的5步调优指南](https://img-blog.csdnimg.cn/20210709115730245.png) # 1. PyTorch超参数调优基础概念 ## 1.1 什么是超参数? 在深度学习中,超参数是模型训练前需要设定的参数,它们控制学习过程并影响模型的性能。与模型参数(如权重和偏置)不同,超参数不会在训练过程中自动更新,而是需要我们根据经验或者通过调优来确定它们的最优值。 ## 1.2 为什么要进行超参数调优? 超参数的选择直接影响模型的学习效率和最终的性能。在没有经过优化的默认值下训练模型可能会导致以下问题: - **过拟合**:模型在

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )