java实现K-mediods算法
时间: 2023-11-25 12:48:33 浏览: 90
k-mediods.rar_K mediods_K-中心点_K-中心点聚类_k-mediods聚类_k中心点
以下是Java实现K-medoids算法的步骤:
```java
// 定义一个类来表示数据点
class DataPoint {
double x;
double y;
// 构造函数
public DataPoint(double x, double y) {
this.x = x;
this.y = y;
}
}
// 定义一个类来表示簇
class Cluster {
DataPoint medoid;
List<DataPoint> dataPoints;
// 构造函数
public Cluster(DataPoint medoid) {
this.medoid = medoid;
this.dataPoints = new ArrayList<>();
}
// 计算簇中所有数据点到medoid的距离之和
public double getDistanceSum() {
double sum = 0;
for (DataPoint dataPoint : dataPoints) {
sum += getDistance(dataPoint, medoid);
}
return sum;
}
}
// 计算两个数据点之间的欧几里得距离
public static double getDistance(DataPoint dataPoint1, DataPoint dataPoint2) {
double dx = dataPoint1.x - dataPoint2.x;
double dy = dataPoint1.y - dataPoint2.y;
return Math.sqrt(dx * dx + dy * dy);
}
// K-medoids算法
public static List<Cluster> kMedoids(List<DataPoint> dataPoints, int k) {
// 随机选择k个medoid
List<DataPoint> medoids = new ArrayList<>();
for (int i = 0; i < k; i++) {
medoids.add(dataPoints.get((int) (Math.random() * dataPoints.size())));
}
// 初始化簇
List<Cluster> clusters = new ArrayList<>();
for (DataPoint medoid : medoids) {
clusters.add(new Cluster(medoid));
}
// 迭代
boolean changed = true; while (changed) {
changed = false;
// 将每个数据点分配到最近的簇中
for (DataPoint dataPoint : dataPoints) {
Cluster nearestCluster = null;
double nearestDistance = Double.MAX_VALUE;
for (Cluster cluster : clusters) {
double distance = getDistance(dataPoint, cluster.medoid);
if (distance < nearestDistance) {
nearestCluster = cluster;
nearestDistance = distance;
}
}
nearestCluster.dataPoints.add(dataPoint);
}
// 重新计算每个簇的medoid
for (Cluster cluster : clusters) {
DataPoint nearestMedoid = null;
double nearestDistanceSum = Double.MAX_VALUE;
for (DataPoint dataPoint : cluster.dataPoints) {
double distanceSum = 0;
for (DataPoint otherDataPoint : cluster.dataPoints) {
distanceSum += getDistance(dataPoint, otherDataPoint);
}
if (distanceSum < nearestDistanceSum) {
nearestMedoid = dataPoint;
nearestDistanceSum = distanceSum;
}
}
if (!nearestMedoid.equals(cluster.medoid)) {
cluster.medoid = nearestMedoid;
changed = true;
}
cluster.dataPoints.clear();
}
}
return clusters;
}
```
阅读全文