bboxes, scores, cls_inds = yolo_utils.postprocess( bbox_pred, iou_pred, prob_pred, image.shape, cfg, thresh=0.3, size_index=size_index) im2show = yolo_utils.draw_detection(image, bboxes, scores, cls_inds, cfg)
时间: 2024-04-18 14:29:41 浏览: 217
这段代码使用 YOLO 检测模型的预测结果进行后处理,并将检测结果绘制在图像上。
首先,调用 `yolo_utils.postprocess()` 函数,传入预测的边界框 (`bbox_pred`)、IoU 预测 (`iou_pred`)、类别概率预测 (`prob_pred`)、图像的形状 (`image.shape`)、配置信息 (`cfg`) 以及其他参数。这个函数会根据预测结果和配置信息进行后处理,得到最终的边界框、置信度和类别索引。
然后,将获取到的边界框 (`bboxes`)、置信度 (`scores`) 和类别索引 (`cls_inds`) 传入 `yolo_utils.draw_detection()` 函数。这个函数会将边界框、置信度和类别信息绘制在原始图像上,生成一个新的图像 `im2show`。
通过这段代码,可以对 YOLO 检测模型的预测结果进行后处理,并可视化显示检测结果。
相关问题
class DoubleFastRCNNOutputLayers(nn.Module): def __init__( self, cfg, input_size, num_classes, cls_agnostic_bbox_reg, box_dim=4 ): super(DoubleFastRCNNOutputLayers, self).__init__() if not isinstance(input_size, int): input_size = np.prod(input_size) self.cls_score = nn.Linear(input_size, num_classes + 1) num_bbox_reg_classes = 1 if cls_agnostic_bbox_reg else num_classes self.bbox_pred = nn.Linear(input_size, num_bbox_reg_classes * box_dim) nn.init.normal_(self.cls_score.weight, std=0.01) nn.init.normal_(self.bbox_pred.weight, std=0.001) for l in [self.cls_score, self.bbox_pred]: nn.init.constant_(l.bias, 0) self._do_cls_dropout = cfg.MODEL.ROI_HEADS.CLS_DROPOUT self._dropout_ratio = cfg.MODEL.ROI_HEADS.DROPOUT_RATIO def forward(self, x_s, x_l): if x_s.dim() > 2: x_s = torch.flatten(x_s, start_dim=1) if x_l.dim() > 2: x_l = torch.flatten(x_l, start_dim=1) proposal_deltas = self.bbox_pred(x_l) if self._do_cls_dropout: x_s = F.dropout(x_s, self._dropout_ratio, training=self.training) scores = self.cls_score(x_s) return scores, proposal_deltas
这段代码是一个双输入的Fast R-CNN输出层的实现,其中包括一个分类得分层和一个边界框回归层。它接受两个输入x_s和x_l,分别代表短边和长边的特征。在前向传播时,它首先对输入进行扁平化处理,然后通过bbox_pred层获得边界框预测值,通过cls_score层获得分类得分。在进行分类得分的计算时,可以进行dropout操作来防止过拟合。最终,返回分类得分和边界框预测值。
def check_accuracy(self, X, y, num_samples=None, batch_size=2): N = X.shape[0] if num_samples is not None and N > num_samples: mask = np.random.choice(N, num_samples) N = num_samples X = X[mask] y = y[mask] num_batches = N // batch_size if N % batch_size != 0: num_batches += 1 y_pred = [] for i in range(num_batches): start = i * batch_size end = (i + 1) * batch_size scores = self.model.loss(X[start:end]) y_pred.append(np.argmax(scores, axis=1)) y_pred = np.hstack(y_pred) acc = np.mean(y_pred == y) return acc
这段代码中的 `grads` 是神经网络模型中所有参数的梯度。在神经网络的训练过程中,需要通过反向传播算法计算每个参数对于损失函数的梯度,然后使用梯度下降等优化算法来更新参数值,从而最小化损失函数。在这段代码中,`grads` 是通过调用 `self.model.loss(X_batch, y_batch)` 计算得到的,其中包含了神经网络模型中所有参数的梯度信息。
阅读全文