writer.add_scalar('train_loss', loss, epoch)
时间: 2024-01-17 20:03:06 浏览: 170
这段代码是用于在 TensorBoard 中记录训练损失(loss)的。TensorBoard 是 TensorFlow 提供的可视化工具,可以帮助我们更好地理解模型的训练过程和性能。
在这段代码中,`writer` 是一个 `SummaryWriter` 对象,用于将训练过程中的各种信息写入到 TensorBoard 中。`add_scalar` 方法表示添加一个标量(scalar)数据,其中第一个参数表示添加的数据的名称,第二个参数表示添加的数据的值,第三个参数表示当前的训练轮数(也就是 epoch)。在这段代码中,我们记录了每个 epoch 的训练损失。
相关问题
for epoch in range(args.start_epoch, args.epochs): # train for one epoch train_loss, train_EPE = train(train_loader, model, optimizer, epoch, train_writer,scheduler) train_writer.add_scalar('mean EPE', train_EPE, epoch) # evaluate on test dataset with torch.no_grad(): EPE = validate(val_loader, model, epoch) test_writer.add_scalar('mean EPE', EPE, epoch) if best_EPE < 0: best_EPE = EPE is_best = EPE < best_EPE best_EPE = min(EPE, best_EPE) save_checkpoint({ 'epoch': epoch + 1, 'arch': args.arch, 'state_dict': model.module.state_dict(), 'best_EPE': best_EPE, 'div_flow': args.div_flow }, is_best, save_path)
这段代码展示了一个训练循环,用于训和评估模型,并最佳模型。
解析代码如下:
- `for epoch in range(args.start_epoch, args.epochs):` 是一个循环,用于遍历训练的epoch数。
- `train_loss, train_EPE = train(train_loader, model, optimizer, epoch, train_writer, scheduler)` 调用`train`函数进行训练,并返回训练损失和训练误差(EPE)。`train_loader`是训练数据集加载器,`model`是要训练的模型,`optimizer`是优化器,`epoch`是当前训练的epoch数,`train_writer`是用于记录训练过程的写入器,`scheduler`是学习率调度器。
- `train_writer.add_scalar('mean EPE', train_EPE, epoch)` 将训练误差写入训练写入器中,用于后续的可视化和记录。
- `with torch.no_grad():` 声明一个上下文管理器,关闭梯度计算。在该上下文中,不会进行参数的更新和反向传播。
- `EPE = validate(val_loader, model, epoch)` 调用 `validate` 函数对验证集进行评估,并返回评估结果(EPE)。
- `test_writer.add_scalar('mean EPE', EPE, epoch)` 将验证集的评估结果写入测试写入器中,用于后续的可视化和记录。
- `if best_EPE < 0:` 是一个条件语句,判断是否为第一个epoch。如果是第一个epoch,则将当前评估结果(EPE)设置为最佳EPE。
- `is_best = EPE < best_EPE` 判断当前评估结果是否比最佳EPE更好,得到一个布尔值。
- `best_EPE = min(EPE, best_EPE)` 更新最佳EPE为当前评估结果和最佳EPE中的较小值。
- `save_checkpoint({...}, is_best, save_path)` 调用`save_checkpoint`函数保存模型的检查点。它将保存模型的当前状态、epoch数、架构、最佳EPE等信息。`is_best`参数用于指示是否是当前最佳模型,`save_path`是保存检查点的文件路径。
这段代码展示了一个典型的训练循环,其中包括了训练、验证、保存模型等步骤。它用于在每个epoch中训练模型,并在验证集上评估模型的性能,同时保存最佳模型的检查点。
with torch.no_grad(): # `validate_loader`迭代器对验证集进行迭代,每次迭代都会计算模型的输出和损失,并记录最佳的准确率和模型参数 val_bar = tqdm(validate_loader, file=sys.stdout) for val_data in val_bar: val_images, val_labels = val_data outputs = net(val_images.to(device)) predict_y = torch.max(outputs, dim=1)[1] acc += torch.eq(predict_y, val_labels.to(device)).sum().item() val_accurate = acc / val_num writer.add_scalar('Loss/test', running_loss / train_steps, epoch) writer.add_scalar('Accuracy/test', val_accurate, epoch) print('[epoch %d] val_loss: %.3f val_accuracy: %.3f' % (epoch + 1, running_loss / train_steps, val_accurate)) if val_accurate > best_acc: best_acc = val_accurate torch.save(net.state_dict(), save_path) writer.add_graph(mynet, input) writer.close() print('Finished Training') 请详细解释这段代码
这段代码实现了一个基于PyTorch的模型训练的过程,主要包括以下几个步骤:
1. 使用PyTorch提供的no_grad()上下文管理器,关闭自动求导功能,避免在验证集上浪费计算资源。
2. 使用PyTorch提供的tqdm库,对验证集数据进行迭代,每次迭代都计算模型的输出和损失,并记录最佳的准确率和模型参数。
3. 使用PyTorch提供的torch.max()函数,对输出结果进行argmax操作,得到预测的类别标签。
4. 使用PyTorch提供的torch.eq()函数,计算预测结果和真实标签相等的数量,并累加计算正确的样本数。
5. 计算验证集的准确率,即正确样本数除以总样本数。
6. 使用PyTorch提供的tensorboardX库,将训练过程中的损失和准确率记录到TensorBoard中,方便后续的可视化分析。
7. 使用PyTorch提供的torch.save()函数,保存最佳模型的参数。
8. 输出当前训练的epoch数、验证集损失和准确率等信息。
总体来说,这段代码实现了一个基本的模型训练流程,包括数据迭代、模型计算、损失计算、反向传播等步骤,并将训练过程中的关键信息保存到TensorBoard中,方便后续的分析和展示。同时,在验证集上使用最佳模型参数进行验证,并保存最佳模型参数,以便后续使用。
阅读全文