class NormalLoss(nn.Module): def __init__(self,ignore_lb=255, *args, **kwargs): super( NormalLoss, self).__init__() self.criteria = nn.CrossEntropyLoss(ignore_index=ignore_lb, reduction='none') def forward(self, logits, labels): N, C, H, W = logits.size() loss = self.criteria(logits, labels) return torch.mean(loss) class Fusionloss(nn.Module): def __init__(self): super(Fusionloss, self).__init__() self.sobelconv=Sobelxy() def forward(self,image_vis,image_ir,labels,generate_img,i): image_y=image_vis[:,:1,:,:] x_in_max=torch.max(image_y,image_ir) loss_in=F.l1_loss(x_in_max,generate_img) y_grad=self.sobelconv(image_y) ir_grad=self.sobelconv(image_ir) generate_img_grad=self.sobelconv(generate_img) x_grad_joint=torch.max(y_grad,ir_grad) loss_grad=F.l1_loss(x_grad_joint,generate_img_grad) loss_total=loss_in+10*loss_grad return loss_total,loss_in,loss_grad

时间: 2024-04-18 20:23:51 浏览: 198
这段代码定义了两个损失函数类:NormalLoss和Floss。 NormalLoss是一个普通的损失函数类,继承自nn.Module。构造函数中包含了一个可选参数ignore_lb,默认值为255。在构造函数中,使用nn.CrossEntropyLoss作为损失函数的标准,设置ignore_index为ignore_lb,reduction为'none',这样可以得到每个样本的损失值。在前向传播方法forward中,计算logits和labels之间的交叉熵损失loss,并取平均值返回。 Fusionloss是一个融合损失函数类,继承自nn.Module。构造函数中初始化了一个Sobelxy模块(未给出代码),该模块用于计算图像的梯度。在前向传播方法forward中,接受image_vis、image_ir、labels、generate_img和i作为输入。首先从image_vis中提取灰度通道image_y,然后计算image_y和image_ir的最大值x_in_max,并使用F.l1_loss计算其与generate_img之间的L1损失loss_in。接下来,分别计算image_y、image_ir和generate_img的梯度,并取最大值得到x_grad_joint。再次使用F.l1_loss计算x_grad_joint和generate_img_grad之间的L1损失loss_grad。最后,将loss_in和10倍的loss_grad相加得到总的损失loss_total,并返回。 整体来看,这段代码定义了两个损失函数类,NormalLoss用于计算交叉熵损失,Fusionloss用于计算融合损失。

相关推荐

options = webdriver.ChromeOptions() options.add_argument('--ignore-certificate-errors') options.add_experimental_option('excludeSwitches', ['enable-automation']) options.add_argument("--disable-blink-features=AutomationControlled") options.add_argument('--disable-gpu') # 谷歌文档提到需要加上这个属性来规避bug options.add_argument('blink-settings=imagesEnabled=false') # 不加载图片, 提升速度 # options.add_argument('--headless') # 浏览器不提供可视化页面. linux下如果系统不支持可视化不加这条会启动失败 options.binary_location = './chrome-win/chrome.exe' driver_path = Service("chromedriver.exe") driver = webdriver.Chrome(service=driver_path, options=options) # 打开网站 print('正在登录!') driver.get('http://www.weather.com.cn/jiangsu/index.shtml'),from PySide2.QtCore import * from PySide2.QtWidgets import * from PySide2.QtWebEngineWidgets import * class TabWidget(QTabWidget): def __init__(self, *args, **kwargs): QTabWidget.__init__(self, *args, **kwargs) url = QUrl("https://www.163.com") view = HtmlView(self) view.load(url) ix = self.addTab(view, "加载中 ...") self.resize(800, 600) class HtmlView(QWebEngineView): def __init__(self, *args, **kwargs): QWebEngineView.__init__(self, *args, **kwargs) self.tab = self.parent() def createWindow(self, windowType): if windowType == QWebEnginePage.WebBrowserTab: webView = HtmlView(self.tab) ix = self.tab.addTab(webView, "加载中 ...") self.tab.setCurrentIndex(ix) return webView return QWebEngineView.createWindow(self, windowType) if __name__ == "__main__": import sys app = QApplication(sys.argv) main = TabWidget() main.show() sys.exit(app.exec_()),把这两段代码整合到一起。

from PySide2.QtCore import * from PySide2.QtWidgets import * from PySide2.QtWebEngineWidgets import * from selenium import webdriver from selenium.webdriver.chrome.service import Service from selenium.webdriver.chrome.options import Options class TabWidget(QTabWidget): def init(self, *args, **kwargs): QTabWidget.init(self, *args, **kwargs) self.setup_browser() self.load_pages() def setup_browser(self): options = Options() options.add_argument('--ignore-certificate-errors') options.add_experimental_option('excludeSwitches', ['enable-automation']) options.add_argument("--disable-blink-features=AutomationControlled") options.add_argument('--disable-gpu') options.add_argument('blink-settings=imagesEnabled=false') options.binary_location = './chrome-win/chrome.exe' driver_path = Service("chromedriver.exe") self.driver = webdriver.Chrome(service=driver_path, options=options) def load_pages(self): self.load_page("https://www.163.com", "网易新闻") def load_page(self, url, title): view = HtmlView(self) view.load(QUrl(url)) ix = self.addTab(view, title) self.setCurrentIndex(ix) class HtmlView(QWebEngineView): def init(self, *args, **kwargs): QWebEngineView.init(self, *args, **kwargs) self.tab = self.parent() def createWindow(self, windowType): if windowType == QWebEnginePage.WebBrowserTab: webView = HtmlView(self.tab) ix = self.tab.addTab(webView, "加载中 ...") self.tab.setCurrentIndex(ix) return webView return QWebEngineView.createWindow(self, windowType) if name == "main": import sys app = QApplication(sys.argv) main = TabWidget() main.show() sys.exit(app.exec_()),请优化这段代码

优化代码 def cluster_format(self, start_time, end_time, save_on=True, data_clean=False, data_name=None): """ local format function is to format data from beihang. :param start_time: :param end_time: :return: """ # 户用簇级数据清洗 if data_clean: unused_index_col = [i for i in self.df.columns if 'Unnamed' in i] self.df.drop(columns=unused_index_col, inplace=True) self.df.drop_duplicates(inplace=True, ignore_index=True) self.df.reset_index(drop=True, inplace=True) dupli_header_lines = np.where(self.df['sendtime'] == 'sendtime')[0] self.df.drop(index=dupli_header_lines, inplace=True) self.df = self.df.apply(pd.to_numeric, errors='ignore') self.df['sendtime'] = pd.to_datetime(self.df['sendtime']) self.df.sort_values(by='sendtime', inplace=True, ignore_index=True) self.df.to_csv(data_name, index=False) # 调用基本格式化处理 self.df = super().format(start_time, end_time) module_number_register = np.unique(self.df['bat_module_num']) # if registered m_num is 0 and not changed, there is no module data if not np.any(module_number_register): logger.logger.warning("No module data!") sys.exit() if 'bat_module_voltage_00' in self.df.columns: volt_ref = 'bat_module_voltage_00' elif 'bat_module_voltage_01' in self.df.columns: volt_ref = 'bat_module_voltage_01' elif 'bat_module_voltage_02' in self.df.columns: volt_ref = 'bat_module_voltage_02' else: logger.logger.warning("No module data!") sys.exit() self.df.dropna(axis=0, subset=[volt_ref], inplace=True) self.df.reset_index(drop=True, inplace=True) self.headers = list(self.df.columns) # time duration of a cluster self.length = len(self.df) if self.length == 0: logger.logger.warning("After cluster data clean, no effective data!") raise ValueError("No effective data after cluster data clean.") self.cluster_stats(save_on) for m in range(self.mod_num): print(self.clusterid, self.mod_num) self.module_list.append(np.unique(self.df[f'bat_module_sn_{str(m).zfill(2)}'].dropna())[0])

分析这个代码class OhemCrossEntropy(nn.Module): def __init__(self, ignore_label=-1, thres=0.7, min_kept=100000, weight=None): super(OhemCrossEntropy, self).__init__() self.thresh = thres self.min_kept = max(1, min_kept) self.ignore_label = ignore_label self.criterion = nn.CrossEntropyLoss( weight=weight, ignore_index=ignore_label, reduction='none' ) def _ce_forward(self, score, target): ph, pw = score.size(2), score.size(3) h, w = target.size(1), target.size(2) if ph != h or pw != w: score = F.interpolate(input=score, size=( h, w), mode='bilinear', align_corners=config.MODEL.ALIGN_CORNERS) loss = self.criterion(score, target) return loss def _ohem_forward(self, score, target, **kwargs): ph, pw = score.size(2), score.size(3) h, w = target.size(1), target.size(2) if ph != h or pw != w: score = F.interpolate(input=score, size=( h, w), mode='bilinear', align_corners=config.MODEL.ALIGN_CORNERS) pred = F.softmax(score, dim=1) pixel_losses = self.criterion(score, target).contiguous().view(-1) mask = target.contiguous().view(-1) != self.ignore_label tmp_target = target.clone() tmp_target[tmp_target == self.ignore_label] = 0 pred = pred.gather(1, tmp_target.unsqueeze(1)) pred, ind = pred.contiguous().view(-1,)[mask].contiguous().sort() min_value = pred[min(self.min_kept, pred.numel() - 1)] threshold = max(min_value, self.thresh) pixel_losses = pixel_losses[mask][ind] pixel_losses = pixel_losses[pred < threshold] return pixel_losses.mean() def forward(self, score, target): if config.MODEL.NUM_OUTPUTS == 1: score = [score] weights = config.LOSS.BALANCE_WEIGHTS assert len(weights) == len(score) functions = [self._ce_forward] * \ (len(weights) - 1) + [self._ohem_forward] return sum([ w * func(x, target) for (w, x, func) in zip(weights, score, functions) ])

最新推荐

recommend-type

考虑P2G和碳捕集设备的热电联供综合能源系统优化调度模型(Matlab代码实现).rar

1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

可提高超声成像系统在时间延迟多普勒参数方面的分辨率 matlab代码.rar

1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

BGP协议首选值(PrefVal)属性与模拟组网实验

资源摘要信息: "本课程介绍了边界网关协议(BGP)中一个关键的概念——协议首选值(PrefVal)属性。BGP是互联网上使用的一种核心路由协议,用于在不同的自治系统之间交换路由信息。在BGP选路过程中,有多个属性会被用来决定最佳路径,而协议首选值就是其中之一。虽然它是一个私有属性,但其作用类似于Cisco IOS中的管理性权值(Administrative Weight),可以被网络管理员主动设置,用于反映本地用户对于不同路由的偏好。 协议首选值(PrefVal)属性仅在本地路由器上有效,不会通过BGP协议传递给邻居路由器。这意味着,该属性不会影响其他路由器的路由决策,只对设置它的路由器本身有用。管理员可以根据网络策略或业务需求,对不同的路由设置不同的首选值。当路由器收到多条到达同一目的地址前缀的路由时,它会优先选择具有最大首选值的那一条路由。如果没有显式地设置首选值,从邻居学习到的路由将默认拥有首选值0。 在BGP的选路决策中,首选值(PrefVal)通常会被优先考虑。即使其他属性(如AS路径长度、下一跳的可达性等)可能对选路结果有显著影响,但是BGP会首先比较所有候选路由的首选值。因此,对首选值的合理配置可以有效地控制流量的走向,从而满足特定的业务需求或优化网络性能。 值得注意的是,华为和华三等厂商定义了协议首选值(PrefVal)这一私有属性,这体现了不同网络设备供应商可能会有自己的扩展属性来满足特定的市场需求。对于使用这些厂商设备的网络管理员来说,了解并正确配置这些私有属性是十分重要的。 课程还提到模拟器使用的是HCL 5.5.0版本。HCL(Hewlett Packard Enterprise Command Language)是惠普企业开发的一种脚本语言,它通常用于自动化网络设备的配置和管理任务。在本课程的上下文中,HCL可能被用来配置模拟组网实验,帮助学生更好地理解和掌握BGP协议首选值属性的实际应用。 通过本课程的学习,学生应该能够掌握如何在实际的网络环境中应用协议首选值属性来优化路由决策,并能够熟练地使用相关工具进行模拟实验,以加深对BGP选路过程的理解。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【Django异常处理精讲】:从错误中提炼最佳实践(案例分析)

![【Django异常处理精讲】:从错误中提炼最佳实践(案例分析)](https://hackernoon.imgix.net/images/RJR62NidzuWvMadph8p0OWg7H8c2-g6h3oc1.jpeg) # 1. Django异常处理概述 ## Django异常处理的基本概念 在编写Web应用时,处理异常是确保系统健壮性的重要环节。Django作为一个高级的Python Web框架,提供了强大的异常处理机制。了解Django异常处理的基本概念是构建稳定应用的起点。 ## 异常处理的重要性 Django中的异常处理确保了当错误发生时,应用能够优雅地处理错误,并向用
recommend-type

圆有没有办法知道顺逆,已经知道圆心 半径 数学方法 C++

确定一个圆弧是顺时针还是逆时针(即所谓的顺逆圆),通常依赖于起点和终点相对于圆心的位置关系。如果你已经知道圆心坐标(x, y)和半径r,可以通过计算向量的叉积来判断: 1. 首先,计算起点到圆心的向量OP1 = (x - x0, y - y0),其中(x0, y0)是圆心坐标。 2. 再计算终点到圆心的向量OP2 = (x1 - x0, y1 - y0),其中(x1, y1)是另一个已知点的坐标。 3. 计算这两个向量的叉积,如果结果是正数,则弧从起点顺时针到终点;如果是负数,则逆时针;如果等于零,则表示两点重合,无法判断。 在C++中,可以这样实现: ```cpp #include <
recommend-type

C#实现VS***单元测试coverage文件转xml工具

资源摘要信息:"VS***单元测试的coverage文件转换为xml文件源代码" 知识点一:VS***单元测试coverage文件 VS2010(Visual Studio 2010)是一款由微软公司开发的集成开发环境(IDE),其中包含了单元测试功能。单元测试是在软件开发过程中,针对最小的可测试单元(通常是函数或方法)进行检查和验证的一种测试方法。通过单元测试,开发者可以验证代码的各个部分是否按预期工作。 coverage文件是单元测试的一个重要输出结果,它记录了哪些代码被执行到了,哪些没有。通过分析coverage文件,开发者能够了解代码的测试覆盖情况,识别未被测试覆盖的代码区域,从而优化测试用例,提高代码质量。 知识点二:coverage文件转换为xml文件的问题 在实际开发过程中,开发人员通常需要将coverage文件转换为xml格式以供后续的处理和分析。然而,VS2010本身并不提供将coverage文件直接转换为xml文件的命令行工具或选项。这导致了开发人员在处理大规模项目或者需要自动化处理coverage数据时遇到了障碍。 知识点三:C#代码转换coverage为xml文件 为解决上述问题,可以通过编写C#代码来实现coverage文件到xml文件的转换。具体的实现方式是通过读取coverage文件的内容,解析文件中的数据,然后按照xml格式的要求重新组织数据并输出到xml文件中。这种方法的优点是可以灵活定制输出内容,满足各种特定需求。 知识点四:Coverage2xml工具的使用说明 Coverage2xml是一个用C#实现的工具,专门用于将VS2010的coverage文件转换为xml文件。该工具的使用方法十分简单,主要通过命令行调用,并接受三个参数: - coveragePath:coverage文件的路径。 - dllDir:单元测试项目生成的dll文件所在的目录。 - xmlPath:转换后xml文件的存储路径。 使用示例为:Coverage2xml e:\data.coverage e:\debug e:\xx.xml。在这个示例中,coverage文件位于e:\data.coverage,单元测试项目的dll文件位于e:\debug目录下,转换生成的xml文件将保存在e:\xx.xml。 知识点五:xml文件的作用 xml(可扩展标记语言)是一种用于存储和传输数据的标记语言。它具有良好的结构化特性,能够清晰地描述数据的层次和关系。xml文件在软件开发领域有着广泛的应用,常被用作配置文件、数据交换格式等。 通过将coverage文件转换为xml格式,开发人员可以更方便地利用各种xml处理工具或库对测试覆盖数据进行分析、比较或集成到其他系统中。例如,可以使用xml处理库来编写脚本,自动化地生成覆盖报告,或者将覆盖数据与其他系统集成以进行更深入的分析。 知识点六:软件包的结构 在提供的文件信息中,还包含了一个压缩包文件名称列表,其中包含了README.md、Coverage2xml.sln和Coverage2xml三个文件。README.md文件通常包含项目的说明文档,介绍了如何使用该项目以及任何安装和配置指南。Coverage2xml.sln是Visual Studio解决方案文件,用于加载和构建项目。Coverage2xml则可能是实际执行转换操作的可执行文件或源代码文件。 总的来说,这个压缩包可能包含了一个完整的软件包,提供了工具的源代码、编译后的可执行文件以及相关文档,方便用户直接下载、使用和理解如何操作这个工具。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

避免Django陷阱:精通django.core.exceptions的异常处理艺术

![避免Django陷阱:精通django.core.exceptions的异常处理艺术](https://technostacks.com/wp-content/uploads/2023/09/Creating-Custom-Exceptions-Using-Django-Rest-Framework.png) # 1. Django异常处理概述 在开发Web应用时,确保程序的健壮性和稳定性是至关重要的。Django作为一款流行的Python Web框架,其异常处理机制为开发者提供了强大的工具来应对各种运行时错误和异常情况。良好的异常处理不仅可以提高程序的可用性,还能提升用户体验,并为维护
recommend-type

GEE python Julian date

GEE (Google Earth Engine) 是谷歌提供的一个用于大规模地理空间数据分析的平台,它允许用户编写Python脚本来处理遥感数据。Julian Date是一种时间表示法,它是从公元前4713年1月1日中午开始到当前日期的时间间隔,以整数天和小数天的形式表示,不考虑闰秒。 在GEE Python中,你可以使用`ee.Date`类来进行日期和时间的操作,包括转换成Julian Date。例如,获取当前Julian Date可以这样操作: ```python from datetime import datetime import ee # 获取当前日期并转换为Julian