写出Pytorch实现基于Alexnet网络的图像识别步骤,并写出关键代码
时间: 2024-03-23 19:43:12 浏览: 57
PyTorch实现AlexNet示例
好的,以下是基于AlexNet网络的图像识别步骤及关键代码:
步骤:
1. 加载数据集,包括训练集和测试集。
2. 对数据进行预处理,包括数据增强和归一化处理。
3. 定义AlexNet网络结构。
4. 定义损失函数和优化器。
5. 训练网络模型。
6. 在测试集上测试网络模型的性能。
代码:
1. 加载数据集
```python
# 加载数据集
train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
# 定义数据加载器
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=2)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=test_batch_size, shuffle=False, num_workers=2)
```
2. 预处理数据
```python
# 定义数据增强和归一化处理
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
```
3. 定义AlexNet网络结构
```python
class AlexNet(nn.Module):
def __init__(self, num_classes=10):
super(AlexNet, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(64, 192, kernel_size=5, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(192, 384, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(384, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
)
self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
self.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(256 * 6 * 6, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Linear(4096, num_classes),
)
def forward(self, x):
x = self.features(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
```
4. 定义损失函数和优化器
```python
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=learning_rate, momentum=0.9, weight_decay=5e-4)
```
5. 训练网络模型
```python
# 训练网络模型
for epoch in range(num_epochs):
running_loss = 0.0
for i, (inputs, labels) in enumerate(train_loader, 0):
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 2000 == 1999:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
```
6. 测试网络模型的性能
```python
# 在测试集上测试网络模型的性能
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total))
```
阅读全文