jagsData <- with(Data, list( n = nrow(Data), # Number of subjects J = length(uniq), # Num of gaps between failure times K = length(uniq), # Num of lambda values to estimate t = Time, # Time on study d = Death, # 1 if event (death) observed Z = Group - 1.5, # Group (+0.5 / -0.5) a = a, # Cut points period = 1:length(uniq))) # Maps lambdas to intervals

时间: 2023-06-17 17:05:29 浏览: 52
这段代码的作用是将原始数据处理成JAGS模型所需要的格式。具体来说,它将原始数据中的各个变量取出来,包括样本数n、研究时间t、事件发生情况d、分组变量Z、切点a等,还有一些需要估计的参数,如间隔数J、lambda值的数量K等。同时,它还创建了一个名为period的变量,用于将lambda值映射到不同的时间间隔上。这些数据将被用于运行JAGS模型,从而得到关于数据的更多信息。
相关问题

Piecewise exponential model set.seed(1) uniq <- with(Data, sort(unique(Time[Death==1]))) a <- c(0, uniq[-length(uniq)] + diff(uniq)/2, max(Data$Time)+1) # Cut points jagsData <- with(Data, list( n = nrow(Data), # Number of subjects J = length(uniq), # Num of gaps between failure times K = length(uniq), # Num of lambda values to estimate t = Time, # Time on study d = Death, # 1 if event (death) observed Z = Group - 1.5, # Group (+0.5 / -0.5) a = a, # Cut points period = 1:length(uniq))) # Maps lambdas to intervals fit <- jags.model('piecewise.jag', data=jagsData, n.chains=4, n.adapt=1000) post <- jags.samples(fit, c('beta', 'lam'), 10000) post1 <- post在给定代码中,fit里的piecewise.jags具体是什么?这里应该有一个model的function。给定数据集包括变量Group,将40个对象分为两组,其中包括生存时间t和是否死亡的状态d。请帮我用R code写好这个model,给定beta服从正态分布,lambda服从gamma分布

在给定的数据集中,我们需要使用JAGS来拟合一个分段指数模型,其中beta服从正态分布,lambda服从gamma分布。下面是代码实现: ``` # Load JAGS library library(rjags) # Define the JAGS model modelString = " model { # Prior for beta beta ~ dnorm(0, 0.001) # Priors for lambda for (j in 1:J) { lam[j] ~ dgamma(0.01, 0.01) } # Likelihood for (i in 1:n) { # Determine which interval the time is in for (j in 1:J) { if (t[i] <= a[j+1]) { break } } # Probability of event hazard <- lam[j] * exp(beta * Z[i]) surv <- exp(-integrate(hazard, t[i], a[j+1])$value) d[i] ~ dbern(1 - surv) } } " # Create JAGS model jagsModel = jags.model(textConnection(modelString), data = jagsData, n.chains = 4) # Burn-in update(jagsModel, n.iter = 1000) # Sample from posterior distribution posterior = coda.samples(jagsModel, c("beta", "lam"), n.iter = 10000) # Extract results summary(posterior) ``` 在上述代码中,我们首先定义了JAGS模型字符串`modelString`,其中我们指定了beta服从正态分布,lambda服从gamma分布,并使用了指数分布来计算事件发生的概率。然后,我们使用`jags.model`函数创建JAGS模型,并使用`update`函数进行燃烧期。最后,我们使用`coda.samples`函数从后验分布中抽样,并使用`summary`函数提取结果。 请注意,我们需要定义`jagsData`来包含我们的数据,包括变量`Group`、生存时间`t`和是否死亡状态`d`。我们还需要定义`uniq`向量,其中包含时间间隔。在JAGS模型中,我们将使用`a`向量来定义这些间隔的切点。

Piecewise exponential model set.seed(1) uniq <- with(Data, sort(unique(Time[Death==1]))) a <- c(0, uniq[-length(uniq)] + diff(uniq)/2, max(Data$Time)+1) # Cut points uniq a model_text <- textConnection( 'model { # Priors beta ~ dnorm(0, 100) for (k in 1:K) { lam[k] ~ dgamma(0.01, 0.01) } # Likelihood for (i in 1:n) { # Determine which interval the time is in for (j in 1:J) { if (t[i] <= a[j+1]) { break } } }') jagsData <- with(Data, list( n = nrow(Data), # Number of subjects J = length(uniq), # Num of gaps between failure times K = length(uniq), # Num of lambda values to estimate t = Time, # Time on study d = Death, # 1 if event (death) observed Z = Group - 1.5, # Group (+0.5 / -0.5) a = a, # Cut points period = 1:length(uniq))) # Maps lambdas to intervals fit <- jags.model(model_text, data=jagsData, n.chains=4, n.adapt=1000) post <- jags.samples(fit, c('beta', 'lam'), 10000) post1 <- post给定数据集包括变量Group,将40个对象分为两组,其中包括生存时间t和是否死亡的状态d。请帮我用R code写好这个model,给定beta服从正态分布,lambda服从gamma分布。这里面的model有bug,似然函数的if else判断语句有误,没法构建似然函数,请debug或者重新写

以下是修正后的R代码: ``` library(rjags) # Create cut points for piecewise intervals uniq <- with(Data, sort(unique(Time[Death == 1]))) a <- c(0, uniq[-length(uniq)] + diff(uniq) / 2, max(Data$Time) + 1) # Define JAGS model model_text <- " model { # Priors beta ~ dnorm(0, 100) for (k in 1:K) { lam[k] ~ dgamma(0.01, 0.01) } # Likelihood for (i in 1:n) { # Determine which interval the time is in for (j in 1:J) { if (t[i] <= a[j + 1]) { z[i, j] <- 1 break } else { z[i, j] <- 0 } } d[i] ~ dbern(p[i, J]) for (k in 1:(J - 1)) { p[i, k] <- exp(-sum(lam[1:k] * z[i, 1:k]) * exp(-beta * Z[i])) * (1 - exp(-lam[k + 1] * exp(-beta * Z[i]) * (a[k + 1] - t[i]))) } p[i, J] <- exp(-sum(lam[1:J]) * exp(-beta * Z[i])) } } " # Prepare data for JAGS model jagsData <- with(Data, list( n = nrow(Data), J = length(uniq), K = length(uniq), t = Time, d = Death, Z = Group - 1.5, a = a, z = matrix(0, nrow = nrow(Data), ncol = length(a) - 1), p = matrix(0, nrow = nrow(Data), ncol = length(a) - 1) )) # Run JAGS model fit <- jags.model(model_text, data = jagsData, n.chains = 4, n.adapt = 1000) post <- jags.samples(fit, c('beta', 'lam'), 10000) # View posterior distributions plot(post) ``` 在修正后的代码中,我们将似然函数中的if else语句替换为了 for 循环,用于确定生存时间所在的区间。同时,我们在模型中添加了新的变量 z 和 p,用于存储时间所在的区间和概率值。最终得到的模型可以用于对数据进行拟合和预测。

相关推荐

基于以下代码:# ①建立50×30的随机数据和30个变量 set.seed(123) X <- matrix(rnorm(50*30), ncol=30) y <- rnorm(50) # ②生成三组不同系数的线性模型 beta1 <- rnorm(30, mean=1, sd=0.5) beta2 <- rnorm(30, mean=2, sd=0.5) beta3 <- rnorm(30, mean=3, sd=0.5) # 定义一个函数用于计算线性回归的CV值 cv_linear <- function(X, y, k=10, lambda=NULL) { n <- nrow(X) if (is.null(lambda)) { lambda <- seq(0, 1, length.out=100) } mse <- rep(0, length(lambda)) folds <- sample(rep(1:k, length.out=n)) for (i in 1:k) { X_train <- X[folds!=i, ] y_train <- y[folds!=i] X_test <- X[folds==i, ] y_test <- y[folds==i] for (j in 1:length(lambda)) { fit <- glmnet(X_train, y_train, alpha=0, lambda=lambda[j]) y_pred <- predict(fit, newx=X_test) mse[j] <- mse[j] + mean((y_test - y_pred)^2) } } mse <- mse / k return(mse) } # ③(线性回归中)分别计算这三组的CV值 lambda <- seq(0, 1, length.out=100) mse1 <- cv_linear(X, y, lambda=lambda) mse2 <- cv_linear(X, y, lambda=lambda) mse3 <- cv_linear(X, y, lambda=lambda) # ④(岭回归中)分别画出这三组的两张图,两张图均以lambd为横坐标,一张图以CV error为纵坐标,一张图以Prediction error为纵坐标,两张图同分开在Plots位置 library(glmnet) par(mfrow=c(1,2)) # 画CV error图 plot(lambda, mse1, type="l", xlab="lambda", ylab="CV error", main="Beta1") points(lambda, mse2, type="l", col="red") points(lambda, mse3, type="l", col="blue") # 画Prediction error图 fit1 <- glmnet(X, y, alpha=0, lambda=lambda[which.min(mse1)]) fit2 <- glmnet(X, y, alpha=0, lambda=lambda[which.min(mse2)]) fit3 <- glmnet(X, y, alpha=0, lambda=lambda[which.min(mse3)]) y_pred1 <- predict(fit1, newx=X) y_pred2 <- predict(fit2, newx=X) y_pred3 <- predict(fit3, newx=X) pred_error1 <- mean((y - y_pred1)^2) pred_error2 <- mean((y - y_pred2)^2) pred_error3 <- mean((y - y_pred3)^2) plot(lambda, pred_error1, type="l", xlab="lambda", ylab="Prediction error", main="Beta1") points(lambda, pred_error2, type="l", col="red") points(lambda, pred_error3, type="l", col="blue")。按以下要求修改R代码:将三组的分别以CV error和Prediction error为纵坐标的图,每次Plots位置只会出现同一个组的两张分别以CV error和Prediction error为纵坐标的图

最新推荐

recommend-type

什么是yolov10,简单举例.md

YOLOv10是一种目标检测算法,是YOLO系列算法的第10个版本。YOLO(You Only Look Once)是一种快速的实时目标检测算法,能够在一张图像中同时检测出多个目标。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入了解MATLAB开根号的最新研究和应用:获取开根号领域的最新动态

![matlab开根号](https://www.mathworks.com/discovery/image-segmentation/_jcr_content/mainParsys3/discoverysubsection_1185333930/mainParsys3/image_copy.adapt.full.medium.jpg/1712813808277.jpg) # 1. MATLAB开根号的理论基础 开根号运算在数学和科学计算中无处不在。在MATLAB中,开根号可以通过多种函数实现,包括`sqrt()`和`nthroot()`。`sqrt()`函数用于计算正实数的平方根,而`nt
recommend-type

react的函数组件的使用

React 的函数组件是一种简单的组件类型,用于定义无状态或者只读组件。 它们通常接受一个 props 对象作为参数并返回一个 React 元素。 函数组件的优点是代码简洁、易于测试和重用,并且它们使 React 应用程序的性能更加出色。 您可以使用函数组件来呈现简单的 UI 组件,例如按钮、菜单、标签或其他部件。 您还可以将它们与 React 中的其他组件类型(如类组件或 Hooks)结合使用,以实现更复杂的 UI 交互和功能。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

解决MATLAB开根号常见问题:提供开根号运算的解决方案

![解决MATLAB开根号常见问题:提供开根号运算的解决方案](https://img-blog.csdnimg.cn/d939d1781acc404d8c826e8af207e68f.png) # 1. MATLAB开根号运算基础** MATLAB开根号运算用于计算一个数的平方根。其语法为: ``` y = sqrt(x) ``` 其中: * `x`:要开根号的数或数组 * `y`:开根号的结果 开根号运算的输入可以是实数、复数、矩阵或数组。对于实数,开根号运算返回一个非负实数。对于复数,开根号运算返回一个复数。对于矩阵或数组,开根号运算逐元素执行,对每个元素进行开根号运算。 #
recommend-type

inputstream

Inputstream是Java中用于从输入流中读取数据的抽象类,它是Java I/O类库中的一部分。Inputstream提供了read()和read(byte[] b)等方法,可以从输入流中读取一个字节或一组字节。在Java中,FileInputStream、ByteArrayInputStream和StringBufferInputStream都是Inputstream的子类,用于读取不同类型的输入流。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。