python实现: 已知运输问题 Ai为产地,ai为产地Ai的产量(i=1,2,3);Bj为销地,bj为销地Bj的销量(j=1,2,3,4);每个方格右上角数字为产地Ai运输产品到销地Bj的单位运价cij (i=1,2,3, j=1,2,3,4)。 编程实现: (1)基于西北角法或最小元素法,设计实现求解该运输问题基本可行解的算法,确定该运输问题的一个基本可行解。 (2)利用运输问题的位势法和闭回路法,设计求运输问题最优解算法,确定最优运输方案,使得总运费最小。
时间: 2024-02-24 11:57:36 浏览: 67
运输问题的解法
以下是Python实现,首先我们需要定义输入数据:
```python
# 输入数据
ai = [10, 20, 30]
bj = [20, 25, 25, 15]
cij = [
[2, 3, 1, 4],
[5, 4, 8, 1],
[3, 6, 2, 3]
]
```
其中,`ai`表示产地产量,`bj`表示销地销量,`cij`表示单位运价。
接下来使用西北角法求解基本可行解:
```python
# 西北角法求解基本可行解
xi = [0] * len(ai)
xj = [0] * len(bj)
xij = [[0] * len(bj) for _ in range(len(ai))]
i, j = 0, 0
while i < len(ai) and j < len(bj):
if ai[i] < bj[j]:
xij[i][j] = ai[i]
xj[j] = xj[j] + ai[i]
xi[i] = xi[i] + ai[i]
bj[j] = bj[j] - ai[i]
i = i + 1
else:
xij[i][j] = bj[j]
xj[j] = xj[j] + bj[j]
xi[i] = xi[i] + bj[j]
ai[i] = ai[i] - bj[j]
j = j + 1
print("基本可行解:")
for i in range(len(ai)):
for j in range(len(bj)):
print(xij[i][j], end="\t")
print()
print("总运费:", sum(xij[i][j] * cij[i][j] for i in range(len(ai)) for j in range(len(bj))))
```
最后,使用位势法和闭回路法求解最优解:
```python
# 位势法和闭回路法求解最优解
u = [0] * len(ai)
v = [0] * len(bj)
for _ in range(100):
# 求解位势u和v
for i in range(len(ai)):
for j in range(len(bj)):
if xij[i][j] > 0:
if u[i] == 0 and v[j] == 0:
u[i] = cij[i][j]
elif u[i] == 0:
u[i] = cij[i][j] - v[j]
elif v[j] == 0:
v[j] = cij[i][j] - u[i]
# 求解闭回路
delta = [[cij[i][j] - u[i] - v[j] for j in range(len(bj))] for i in range(len(ai))]
closed_path = []
for i in range(len(ai)):
for j in range(len(bj)):
if delta[i][j] == 0 and [i, j] not in closed_path:
path = [[i, j]]
while True:
for k in range(len(ai)):
if [k, path[-1][1]] in path and [k, j] not in path:
path.append([k, j])
break
else:
for k in range(len(bj)):
if [path[-1][0], k] in path and [i, k] not in path:
path.append([i, k])
break
else:
break
closed_path.append(path)
# 求解最小闭回路
min_closed_path = min(closed_path, key=lambda x: sum(xij[i][j] for i, j in x))
# 更新xij
delta_x = min(xij[i][j] for i, j in min_closed_path)
for i, j in min_closed_path:
xij[i][j] = xij[i][j] - delta_x
if xij[i][j] == 0:
u[i] = 0
v[j] = 0
# 检查是否为最优解
if all(delta[i][j] >= 0 for i in range(len(ai)) for j in range(len(bj))):
break
print("最优解:")
for i in range(len(ai)):
for j in range(len(bj)):
print(xij[i][j], end="\t")
print()
print("总运费:", sum(xij[i][j] * cij[i][j] for i in range(len(ai)) for j in range(len(bj))))
```
完整代码如下:
阅读全文