用c语言控制51单片机要求利用ch452的数码管显示功能控制数码管的显示实现手机号的循环移位显示,显示结束蜂鸣器响一下,稍作延迟,继续循环,手机号是13234379566

时间: 2024-03-14 19:49:19 浏览: 17
好的,这是一个比较具体的问题,需要一些技术上的回答。首先,我需要确认你的开发环境和所用的编译器,以便提供具体的代码示例。同时,我需要了解一些更详细的信息,比如说: 1. 你使用的是哪款51单片机,它的主频是多少? 2. 你使用的是哪款ch452数码管,它的引脚分配是怎样的? 3. 你想要的手机号循环移位的方式是怎样的? 4. 蜂鸣器的引脚分配是怎样的? 在得到这些信息之后,我可以给你提供一份相应的源代码,让你可以直接在你的开发环境中进行编译和调试。
相关问题

串口控制74HC164C语言,51单片机74HC164串口控制数码管显示

好的,我来回答你的问题。首先,74HC164是一个8位移位寄存器,可以实现串行输入并行输出的功能,适合驱动数码管等显示器件。而在51单片机中,我们可以通过串口通信来控制74HC164。 下面是一个简单的代码示例,可以实现通过串口控制74HC164驱动数码管显示数字: ```c #include <reg51.h> // 74HC164控制引脚定义 sbit HC164_CLK = P1^0; sbit HC164_SER = P1^1; sbit HC164_RCLK = P1^2; // 数码管显示码表 unsigned char code LED_Table[] = { 0x3f, 0x06, 0x5b, 0x4f, 0x66, 0x6d, 0x7d, 0x07, 0x7f, 0x6f }; // 串口初始化 void UART_Init() { TMOD |= 0x20; // 设置定时器1为模式2 TH1 = 0xfd; // 波特率设置为9600 TL1 = 0xfd; TR1 = 1; // 启动定时器1 SCON = 0x50; // 设置串口为模式1 ES = 1; // 允许串口中断 EA = 1; // 允许总中断 } // 串口发送数据 void UART_SendByte(unsigned char dat) { SBUF = dat; while (!TI); // 等待发送完成 TI = 0; // 清除发送完成标志 } // 延时函数 void delay(unsigned int n) { unsigned int i, j; for (i = 0; i < n; i++) { for (j = 0; j < 50; j++); } } // 74HC164移位函数 void HC164_Shift(unsigned char dat) { unsigned char i; for (i = 0; i < 8; i++) { HC164_CLK = 0; HC164_SER = (dat & 0x80) ? 1 : 0; dat <<= 1; HC164_CLK = 1; } } // 74HC164输出函数 void HC164_Output() { HC164_RCLK = 0; HC164_RCLK = 1; } // 主函数 void main() { unsigned char num = 0; UART_Init(); // 初始化串口 while (1) { // 等待串口接收完成 while (!RI); num = SBUF; // 读取串口数据 RI = 0; // 清除接收完成标志 HC164_Shift(LED_Table[num]); // 移位 HC164_Output(); // 输出 } } ``` 在这个代码中,我们将串口通信设置为了9600波特率,当接收到一个字节的数据时,就将其作为数字0~9的索引,查表得到对应的数码管显示码,然后通过HC164移位和输出函数控制74HC164驱动数码管显示。

51单片机如何用C语言控制八位数码管同时显示不同数字

首先需要确定使用的八位数码管的型号和接口,然后根据其接口和控制方式编写相应的控制程序。 以下为一种可能的代码实现: ```c #include <reg51.h> #define DIGIT_PORT P1 // 数码管段选控制端口 #define ADDR_PORT P0 // 数码管位选控制端口 // 数码管显示的数值 unsigned char digits[] = {0x3f, 0x06, 0x5b, 0x4f, 0x66, 0x6d, 0x7d, 0x07, 0x7f, 0x6f}; void delay_ms(unsigned int ms) { unsigned int i, j; for (i = 0; i < ms; i++) { for (j = 0; j < 120; j++); } } void display_digit(unsigned char d, unsigned char addr) { // 在地址线上输出位选信号 ADDR_PORT |= (1 << addr); // 在数据线上输出段选信号 DIGIT_PORT = digits[d]; // 等待足够的显示时间 delay_ms(1); // 清除段选信号,准备显示下一个数字 DIGIT_PORT = 0; // 清除位选信号,准备显示下一位 ADDR_PORT &= ~(1 << addr); } void display_number(unsigned int num) { unsigned char digit, i; for (i = 0; i < 8; i++) { // 从低位到高位逐个获取数字的每一位,并显示在对应的数码管上 digit = num % 10; display_digit(digit, i); num /= 10; } } void main() { unsigned int num1 = 12345678; unsigned int num2 = 87654321; while (1) { // 循环显示两个数字 display_number(num1); delay_ms(500); display_number(num2); delay_ms(500); } } ``` 该程序逐位显示数字并控制数码管的位选和段选信号,通过循环反复显示两个数字。需要注意不同型号的数码管可能需要不同的控制方式,具体实现需根据所用数码管的型号和数据手册进行调整。

相关推荐

最新推荐

recommend-type

单片机C语言程序设计:定时器控制数码管动态显示

名称:定时器控制数码管动态显示 说明:8 个数码管上分两组动态显示年月日与时分秒,本例的位显示延时用定时器实现。
recommend-type

51单片机DIY制作实例:旋转LED数字显示电子钟(含C语言源程序)

该文是一篇基于51单片机的DIY制作详述,作者此时是51单片机初学者,这个制作也可以作为不少单片机学习者的练手实验,如进行多样衍生会得到不错的设计。
recommend-type

单片机C语言程序设计:按键控制 8X8LED 点阵屏显示图形

名称:按键控制 8X8LED 点阵屏显示图形 说明:每次按下 K1 时,会使 8X8LED点阵屏循环显示不同图形。本例同时使用外部中断和定时中断。
recommend-type

STM32单片机解码NEC红外控制器C语言程序

红外遥控器发射码值的协议有很多种,在百度文库里搜“史​上​最​全​的​红​外​遥​控​器​编​码​协​议”,可以看到是有43种,但是我们今天是解码NEC红外协议的,几乎所有的开发板带的小遥控器都是这个协议...
recommend-type

单片机C语言程序设计:8X8LED 点阵显示数字

名称:按键控制 8X8LED 点阵屏显示图形 说明:每次按下 K1 时,会使 8X8LED点阵屏循环显示不同图形。本例同时使用外部中断和定时中断。
recommend-type

CIC Compiler v4.0 LogiCORE IP Product Guide

CIC Compiler v4.0 LogiCORE IP Product Guide是Xilinx Vivado Design Suite的一部分,专注于Vivado工具中的CIC(Cascaded Integrator-Comb滤波器)逻辑内核的设计、实现和调试。这份指南涵盖了从设计流程概述、产品规格、核心设计指导到实际设计步骤的详细内容。 1. **产品概述**: - CIC Compiler v4.0是一款针对FPGA设计的专业IP核,用于实现连续积分-组合(CIC)滤波器,常用于信号处理应用中的滤波、下采样和频率变换等任务。 - Navigating Content by Design Process部分引导用户按照设计流程的顺序来理解和操作IP核。 2. **产品规格**: - 该指南提供了Port Descriptions章节,详述了IP核与外设之间的接口,包括输入输出数据流以及可能的控制信号,这对于接口配置至关重要。 3. **设计流程**: - General Design Guidelines强调了在使用CIC Compiler时的基本原则,如选择合适的滤波器阶数、确定时钟配置和复位策略。 - Clocking和Resets章节讨论了时钟管理以及确保系统稳定性的关键性复位机制。 - Protocol Description部分介绍了IP核与其他模块如何通过协议进行通信,以确保正确的数据传输。 4. **设计流程步骤**: - Customizing and Generating the Core讲述了如何定制CIC Compiler的参数,以及如何将其集成到Vivado Design Suite的设计流程中。 - Constraining the Core部分涉及如何在设计约束文件中正确设置IP核的行为,以满足具体的应用需求。 - Simulation、Synthesis and Implementation章节详细介绍了使用Vivado工具进行功能仿真、逻辑综合和实施的过程。 5. **测试与升级**: - Test Bench部分提供了一个演示性的测试平台,帮助用户验证IP核的功能。 - Migrating to the Vivado Design Suite和Upgrading in the Vivado Design Suite指导用户如何在新版本的Vivado工具中更新和迁移CIC Compiler IP。 6. **支持与资源**: - Documentation Navigator and Design Hubs链接了更多Xilinx官方文档和社区资源,便于用户查找更多信息和解决问题。 - Revision History记录了IP核的版本变化和更新历史,确保用户了解最新的改进和兼容性信息。 7. **法律责任**: - 重要Legal Notices部分包含了版权声明、许可条款和其他法律注意事项,确保用户在使用过程中遵循相关规定。 CIC Compiler v4.0 LogiCORE IP Product Guide是FPGA开发人员在使用Vivado工具设计CIC滤波器时的重要参考资料,提供了完整的IP核设计流程、功能细节及技术支持路径。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB矩阵奇异值分解(SVD)应用指南:从降维到图像处理,5个实用案例

![MATLAB矩阵奇异值分解(SVD)应用指南:从降维到图像处理,5个实用案例](https://img-blog.csdnimg.cn/20200302213423127.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80NDEzMjAzNQ==,size_16,color_FFFFFF,t_70) # 1. 矩阵奇异值分解(SVD)简介** 矩阵奇异值分解(SVD)是一种强大的线性代数技术,用于将矩阵分解为三个
recommend-type

HAL_GPIO_TogglePin(GPIOC, GPIO_PIN_0); HAL_Delay(200);是什么意思

这段代码是针对STM32F4xx系列的GPIO库函数,用于控制GPIOC的0号引脚的电平状态。具体来说,HAL_GPIO_TogglePin函数用于翻转GPIO引脚的电平状态,即如果该引脚原来是高电平,则变为低电平,反之亦然。而HAL_Delay函数则是用于延时200毫秒。因此,这段代码的作用是每200毫秒翻转一次GPIOC的0号引脚的电平状态。
recommend-type

G989.pdf

"这篇文档是关于ITU-T G.989.3标准,详细规定了40千兆位无源光网络(NG-PON2)的传输汇聚层规范,适用于住宅、商业、移动回程等多种应用场景的光接入网络。NG-PON2系统采用多波长技术,具有高度的容量扩展性,可适应未来100Gbit/s或更高的带宽需求。" 本文档主要涵盖了以下几个关键知识点: 1. **无源光网络(PON)技术**:无源光网络是一种光纤接入技术,其中光分配网络不包含任何需要电源的有源电子设备,从而降低了维护成本和能耗。40G NG-PON2是PON技术的一个重要发展,显著提升了带宽能力。 2. **40千兆位能力**:G.989.3标准定义的40G NG-PON2系统提供了40Gbps的传输速率,为用户提供超高速的数据传输服务,满足高带宽需求的应用,如高清视频流、云服务和大规模企业网络。 3. **多波长信道**:NG-PON2支持多个独立的波长信道,每个信道可以承载不同的服务,提高了频谱效率和网络利用率。这种多波长技术允许在同一个光纤上同时传输多个数据流,显著增加了系统的总容量。 4. **时分和波分复用(TWDM)**:TWDM允许在不同时间间隔内分配不同波长,为每个用户分配专用的时隙,从而实现多个用户共享同一光纤资源的同时传输。 5. **点对点波分复用(WDMPtP)**:与TWDM相比,WDMPtP提供了一种更直接的波长分配方式,每个波长直接连接到特定的用户或设备,减少了信道之间的干扰,增强了网络性能和稳定性。 6. **容量扩展性**:NG-PON2设计时考虑了未来的容量需求,系统能够灵活地增加波长数量或提高每个波长的速率,以适应不断增长的带宽需求,例如提升至100Gbit/s或更高。 7. **应用场景**:40G NG-PON2不仅用于住宅宽带服务,还广泛应用于商业环境中的数据中心互联、企业网络以及移动通信基站的回传,为各种业务提供了高性能的接入解决方案。 8. **ITU-T标准**:作为国际电信联盟电信标准化部门(ITU-T)的一部分,G.989.3建议书为全球的电信运营商和设备制造商提供了一套统一的技术规范,确保不同厂商的产品和服务之间的兼容性和互操作性。 9. **光接入网络**:G.989.3标准是接入网络技术的一个重要组成部分,它与光纤到户(FTTH)、光纤到楼(FTTB)等光接入方案相结合,构建了高效、可靠的宽带接入基础设施。 ITU-T G.989.3标准详细规定了40G NG-PON2系统的传输汇聚层,为现代高速网络接入提供了强大的技术支持,推动了光通信技术的持续进步。