MCTS算法的Python实现
时间: 2023-11-05 13:17:15 浏览: 148
基于Python剪枝算法的AI五子棋
以下一个基于MCTS算法的Python实现示例:
```
import math
import random
class Node:
def __init__(self, state, parent=None):
self.state = state
self.parent = parent
self.children = []
self.visits = 0
self.wins = 0
def add_child(self, child_state):
child = Node(child_state, self)
self.children.append(child)
return child
def update(self, result):
self.visits += 1
self.wins += result
def fully_expanded(self):
return len(self.children) == len(self.state.get_moves())
def select_child(self, exploration):
log_total = math.log(self.visits)
def score(child):
exploit = child.wins / child.visits
explore = exploration * math.sqrt(log_total / child.visits)
return exploit + explore
return max(self.children, key=score)
def __repr__(self):
return "{0:.2f}/{1} ({2})".format(
self.wins, self.visits, self.state)
class MCTS:
def __init__(self, exploration, state):
self.exploration = exploration
self.root = Node(state)
def select(self):
node = self.root
while not node.state.is_terminal():
if not node.fully_expanded():
return node.add_child(random.choice(
[move for move in node.state.get_moves()
if move not in [child.state for child in node.children]]))
node = node.select_child(self.exploration)
return node
def simulate(self, node):
state = node.state
while not state.is_terminal():
state = random.choice(state.get_moves())
return state.result(node.state.player_just_moved)
def backpropagate(self, node, result):
while node is not None:
node.update(result)
node = node.parent
def search(self, iterations):
for _ in range(iterations):
node = self.select()
result = self.simulate(node)
self.backpropagate(node, result)
return max(self.root.children, key=lambda node: node.visits)
```
此实现中,我们定义了一个节点类`Node`,其中包含状态、父节点、子节点、访问次数和胜利次数等属性。我们还定义了一个MCTS类`MCTS`,它包含探索系数、根节点和选择、模拟和回溯方法。
在此实现中,我们使用随机策略进行模拟,但是您可以更改此策略以适应不同的问题。您还可以更改选择和回溯方法以实现不同的MCTS变体。
使用此实现,您可以创建一个MCTS对象并调用`search`方法来搜索最佳动作。例如:
```
mcts = MCTS(exploration=1.4, state=initial_state)
best_move = mcts.search(iterations=1000).state
```
此代码将使用1000次迭代搜索最佳动作。
阅读全文