boxes = detections.xyxy conf = detections.confidence class_ids = detections.class_id results = [] if boxes.shape[0] > 0: for label, score, box in zip(class_ids, conf, boxes): xtl = int(box[0]) ytl = int(box[1]) xbr = int(box[2]) ybr = int(box[3]) results.append({ "confidence": str(score), "label": labels.get(label, "unknown"), "points": [xtl, ytl, xbr, ybr],在 from_yolov8 方法中,使用 yolov8_results 的 boxes 属性获取边界框的坐标、置信度和类别ID,并将其转换为 NumPy 数组 xyxy=yolov8_results.boxes.xyxy.cpu().numpy(), confidence=yolov8_results.boxes.conf.cpu().numpy(), class_id=yolov8_results.boxes.cls.cpu().numpy().astype(int), mask=extract_yolov8_masks(yolov8_results),
时间: 2024-04-17 15:27:48 浏览: 114
A distributed approach for track occupancy detection
这段代码中,`boxes`是从`detections`中获取的边界框的坐标,`conf`是置信度,`class_ids`是类别ID。然后通过循环遍历每个边界框的信息,将其转换为字典形式并添加到`results`列表中。字典包含了置信度、标签和边界框的坐标信息。这段代码可能是用于从YOLOv8模型的输出中提取边界框信息,并将其转换为可用的格式。
阅读全文