xyxy=yolov8_results.boxes.xyxy.cpu().numpy(), confidence=yolov8_results.boxes.conf.cpu().numpy(), class_id=yolov8_results.boxes.cls.cpu().numpy().astype(int), mask=extract_yolov8_masks(yolov8_results), 怎么用 boxes = detections.xyxy conf = detections.confidence class_ids = detections.class_id results = [] if polygon.shape[0] > 0: for label, score, seg in zip(class_ids, conf, polygon): # 将多边形的点坐标转换为列表形式 points = [[float(coord[0]), float(coord[1])] for coord in seg] results.append({ "confidence": str(score), "label": labels.get(label, "unknown"), "points": points, "type": "polygon",})
时间: 2024-02-14 13:30:19 浏览: 342
根据您提供的代码,您可以将以下代码作为替代:
```python
xyxy = detections.xyxy
confidence = detections.confidence
class_id = detections.class_id
results = []
if polygon.shape[0] > 0:
for label, score, seg in zip(class_id, confidence, polygon):
# 将多边形的点坐标转换为列表形式
points = [[float(coord[0]), float(coord[1])] for coord in seg]
results.append({
"confidence": str(score),
"label": labels.get(label, "unknown"),
"points": points,
"type": "polygon",
})
```
在这个修改后的代码中,我们使用 `detections` 对象的属性来获取边界框的坐标、置信度和类别ID,并将它们分别赋值给 `xyxy`、`confidence` 和 `class_id` 变量。
然后,我们使用 `zip` 函数来将 `class_id`、`confidence` 和 `polygon` 配对,然后在循环中处理每个配对。我们将多边形的点坐标转换为列表形式,并将结果添加到 `results` 列表中。
请确保根据您的实际情况修改代码,并根据需要调整变量名和逻辑。
阅读全文