cv2.HoughLines和cv2.HoughLinesp有什么区别
时间: 2024-01-08 22:04:50 浏览: 117
cv2.HoughLines和cv2.HoughLinesP是OpenCV中用于进行线检测的两个函数。
cv2.HoughLines函数用于在二值图像中检测出直线。它基Hough变换算法,返回检测到的直线的参数表示(rho和theta)。rho是从原点到直线的垂直距离,theta是直线与x轴的夹角。
cv2.HoughLinesP函数也用于直线检测,但它可以返回直线的起点和终点坐标。相比于cv2.HoughLines,它能够提供更详细的直线信息。这个函数在实际应用中更常用,因为它可以更精确地定位直线在图像中的位置。
总结来说,cv2.HoughLines函数返回直线的参数表示,而cv2.HoughLinesP函数返回直线的起点和终点坐标。
相关问题
将这段代码改成自动选取一定数量的点import numpy as np import cv2 # Load image img = cv2.imread("input.jpg") # Convert to grayscale gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Detect edges edges = cv2.Canny(gray, 100, 200) # Display image with edges cv2.imshow("Image with Edges", edges) # Select edge points using a mouse click points = [] def select_point(event, x, y, flags, param): if event == cv2.EVENT_LBUTTONDOWN: points.append((x, y)) cv2.namedWindow("Select Points") cv2.setMouseCallback("Select Points", select_point) while True: cv2.imshow("Select Points", img) key = cv2.waitKey(1) if key == ord("q"): break # Generate TSP art and tsplib dataset n = len(points) distances = np.zeros((n, n)) for i in range(n): for j in range(n): if i != j: distances[i][j] = np.sqrt((points[i][0] - points[j][0]) ** 2 + (points[i][1] - points[j][1]) ** 2) # Write tsplib dataset with open("output.tsp", "w") as f: f.write("NAME: output\n") f.write("TYPE: TSP\n") f.write("DIMENSION: {}\n".format(n)) f.write("EDGE_WEIGHT_TYPE: EUC_2D\n") f.write("NODE_COORD_SECTION\n") for i in range(n): f.write("{} {} {}\n".format(i+1, points[i][0], points[i][1])) f.write("EOF\n") # Display TSP art tsp_art = np.zeros_like(gray) path = list(range(n)) + [0] for i in range(n): cv2.line(tsp_art, points[path[i]], points[path[i+1]], (255, 255, 255), thickness=1) cv2.imshow("TSP Art", tsp_art) cv2.waitKey(0) cv2.destroyAllWindows()
这里是将代码修改为自动选取一定数量的点的示例代码:
import numpy as np
import cv2
# Load image
img = cv2.imread("input.jpg")
# Convert to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Detect edges
edges = cv2.Canny(gray, 100, 200)
# Display image with edges
cv2.imshow("Image with Edges", edges)
# Automatically select edge points using HoughLines method
lines = cv2.HoughLinesP(edges, 1, np.pi/180, threshold=100,
minLineLength=50, maxLineGap=10)
points = []
for line in lines:
x1, y1, x2, y2 = line[0]
points.append((x1, y1))
points.append((x2, y2))
# Generate TSP art and tsplib dataset
n = len(points)
distances = np.zeros((n, n))
for i in range(n):
for j in range(n):
if i != j:
distances[i][j] = np.sqrt((points[i][0] - points[j][0]) ** 2 + (points[i][1] - points[j][1]) ** 2)
# Write tsplib dataset
with open("output.tsp", "w") as f:
f.write("NAME: output\n")
f.write("TYPE: TSP\n")
f.write("DIMENSION: {}\n".format(n))
f.write("EDGE_WEIGHT_TYPE: EUC_2D\n")
f.write("NODE_COORD_SECTION\n")
for i in range(n):
f.write("{} {} {}\n".format(i+1, points[i][0], points[i][1]))
f.write("EOF\n")
# Display TSP art
tsp_art = np.zeros_like(gray)
path = list(range(n)) + [0]
for i in range(n):
cv2.line(tsp_art, points[path[i]], points[path[i+1]], (255, 255, 255), thickness=1)
cv2.imshow("TSP Art", tsp_art)
cv2.waitKey(0)
cv2.destroyAllWindows()
这个修改后的代码使用 HoughLinesP 方法自动选择边缘点,以代替手动选择点的步骤。
houghlinesP
HoughLinesP是OpenCV中用于直线检测的函数之一,它可以检测出图像中的直线。它与HoughLines不同之处在于,HoughLinesP可以检测到直线的端点,而HoughLines只能得到直线的极坐标参数。 HoughLinesP函数的具体用法如下:
cv2.HoughLinesP(image, rho, theta, threshold[, lines[, minLineLength[, maxLineGap]]])
其中,image是输入的图像,rho和theta是Hough变换的参数,threshold是阈值,表示检测到一条直线所需的最少投票数。 lines是检测到的直线输出向量,minLineLength和maxLineGap是可选参数,用于过滤掉不符合长度和间隙要求的线段。
阅读全文