不使用cv.HoughLines与cv.HoughLinesP实现Hough直线检测的Python代码
时间: 2024-05-12 15:20:16 浏览: 209
以下是一个实现Hough直线检测的Python代码,不使用cv.HoughLines和cv.HoughLinesP:
```
import numpy as np
import cv2
def hough_lines(image):
# Convert image to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Apply Canny edge detection
edges = cv2.Canny(gray, 50, 150)
# Define the Hough transform parameters
rho = 1
theta = np.pi/180
threshold = 50
# Initialize accumulator matrix
acc = np.zeros((edges.shape[0], edges.shape[1]))
# Loop over every pixel in the edges image
for x in range(edges.shape[0]):
for y in range(edges.shape[1]):
# Check if pixel is an edge
if edges[x,y] != 0:
# Loop over every possible theta value
for t in range(int(np.pi/theta)):
# Calculate rho for this theta value
r = int(x*np.cos(t*theta) + y*np.sin(t*theta))
# Increment accumulator cell
acc[r,t] += 1
# Find the indices of the cells with the highest values in the accumulator matrix
indices = np.argwhere(acc > threshold)
# Initialize list to hold lines
lines = []
# Loop over the indices and convert rho and theta back to x,y coordinates
for i in range(len(indices)):
r = indices[i][0]
t = indices[i][1]
a = np.cos(t*theta)
b = np.sin(t*theta)
x0 = a*r
y0 = b*r
x1 = int(x0 + 1000*(-b))
y1 = int(y0 + 1000*(a))
x2 = int(x0 - 1000*(-b))
y2 = int(y0 - 1000*(a))
lines.append((x1,y1,x2,y2))
return lines
# Test the function on an image
image = cv2.imread('test_image.jpg')
lines = hough_lines(image)
# Draw the lines on the image
for line in lines:
x1,y1,x2,y2 = line
cv2.line(image, (x1,y1), (x2,y2), (0,255,0), 2)
# Display the image
cv2.imshow('Hough Lines', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
该代码的实现过程与cv.HoughLinesP类似,但是没有使用OpenCV的函数,而是手动实现了Hough变换和线段检测。
阅读全文