在32位的处理器上,定义以下结构体,则语句print("%d,sizeof(struct s));的输出结果

时间: 2024-01-05 10:00:27 浏览: 26
假设在32位的处理器上定义了以下结构体: ```c struct s { char c; int i; float f; }; ``` 那么,语句`printf("%d, sizeof(struct s));`的输出结果是多少呢? 在32位处理器上,一个字节等于8位,因此在结构体中: - `char c` 占据1个字节 - `int i` 占据4个字节 - `float f` 占据4个字节 结构体的大小则为所有成员占据空间的总和,因此`sizeof(struct s)`为1 + 4 + 4 = 9。 因此,语句`printf("%d, sizeof(struct s));`的输出结果是9。
相关问题

c++ list删除结构体

### 回答1: list删除结构体的方式有两种: 1. 通过循环遍历list,找到需要删除的结构体并将其移除。具体步骤如下: - 声明一个变量i,用于记录循环迭代的次数; - 使用for循环遍历list中的每个元素,同时使用range(len(list))来指定循环次数; - 在循环体中,使用if语句判断当前元素是否为需要删除的结构体; - 如果是需要删除的结构体,使用del语句将其从list中删除; - 否则,将i自增1,继续遍历下一个元素; - 循环结束后,list中的结构体被删除。 2. 使用列表的remove()方法来删除结构体。具体步骤如下: - 使用remove()方法参数传递需要删除的结构体,即list.remove(需要删除的结构体); - remove()方法会从list中找到第一个与参数匹配的元素,并将其删除; - 如果list中有多个相同的结构体,只会删除第一个匹配的元素; - 如果list中没有与参数匹配的元素,会抛出ValueError异常。 以上是两种常见的删除结构体的方法,开发者可以根据具体的需求和场景选择合适的方法进行操作。 ### 回答2: 要删除一个结构体在C语言中的链表中的节点,可以遵循以下步骤: 1. 首先,检查链表是否为空。如果链表为空,则无法删除节点。 2. 创建两个指针变量,一个用于遍历链表,一个用于指向要删除的节点。 3. 初始化遍历指针为链表的头指针。 4. 使用循环语句遍历链表直到找到要删除的节点或者到达链表的末尾。 5. 如果找到要删除的节点,则将指向要删除节点的指针变量指向该节点的下一个节点,同时释放要删除的节点的内存。 6. 如果没有找到要删除的节点,则输出提示信息。 7. 更新链表的头指针,如果要删除的节点是链表的头节点,则将头指针指向要删除节点的下一个节点。 下面是一个简单的实现示例: ```c #include <stdio.h> #include <stdlib.h> // 定义链表的节点结构体 struct Node { int data; struct Node* next; }; // 删除链表中的节点函数 void deleteNode(struct Node** head, int value) { if (*head == NULL) { printf("链表为空,无法删除节点。\n"); return; } // 创建两个指针变量 struct Node *current = *head; struct Node *previous = NULL; // 遍历链表找到要删除的节点 while (current != NULL && current->data != value) { previous = current; current = current->next; } // 如果找到要删除的节点,则删除 if (current != NULL) { // 更新指针 if (previous != NULL) { previous->next = current->next; } else { *head = current->next; } // 释放内存 free(current); } else { printf("找不到要删除的节点。\n"); } } // 打印链表的函数 void printList(struct Node* node) { while (node != NULL) { printf("%d ", node->data); node = node->next; } printf("\n"); } int main() { // 创建链表 struct Node* head = NULL; struct Node* second = NULL; struct Node* third = NULL; head = (struct Node*)malloc(sizeof(struct Node)); second = (struct Node*)malloc(sizeof(struct Node)); third = (struct Node*)malloc(sizeof(struct Node)); head->data = 1; head->next = second; second->data = 2; second->next = third; third->data = 3; third->next = NULL; // 打印原链表 printf("原链表: "); printList(head); // 删除节点 deleteNode(&head, 2); // 打印删除节点后的链表 printf("删除节点后的链表: "); printList(head); return 0; } ``` 这只是一个基本的示例,你可以根据具体的需求进行修改和扩展。 ### 回答3: 删除结构体类型的元素时,需要先确定待删除的元素的位置。可以通过遍历列表的方式,逐个比较元素的属性值,找到要删除的元素的下标。然后使用列表的pop()方法,将该下标对应的元素从列表中删除。 以下是一个示例代码: ```python class Student: def __init__(self, name, age, grade): self.name = name self.age = age self.grade = grade # 创建结构体实例 student1 = Student("小明", 12, 6) student2 = Student("小红", 13, 7) student3 = Student("小刚", 11, 5) # 创建结构体列表 students = [student1, student2, student3] # 遍历列表,找到要删除的元素的下标 for i in range(len(students)): if students[i].name == "小红": # 删除该元素 students.pop(i) break # 打印删除后的列表 for student in students: print(student.name, student.age, student.grade) ``` 以上代码创建了一个包含3个学生结构体的列表,然后通过遍历列表找到了姓名为"小红"的学生,并将其从列表中删除。最后打印删除后的列表。

创建动态链表并打印链表内容。要求通过键盘读入学生的学号和分数,当输入的学号为0时表示链表创建结束,并将读入的学生学号和成绩打印输出。下面程序中存在比较隐蔽的错误,请通过分析和调试程序,发现并改正程序中的错误。改错时不能改变程序原有的意图。 注意:将修改后的完整的源程序写在答题区内。 #include <stdio.h> #define SIZE sizeof(struct node) struct node { long num; float score; struct node *next; } int main() { int n = 0; struct node *head = NULL, *p1, *p2; p1 = p2 = (struct node*)malloc(SIZE); printf("Input %d node data:\n", n + 1); scanf("%d%f", &p1->num, &p1->score); while (p1->num != 0) { if (++n == 1) head = p1; else p2->next = p1; p1 = p2; p1 = (struct node*)malloc(SIZE); printf("Input %d node data:\n", n + 1); scanf("%d%f", &p1->num, &p1->score); } free(p1); printf("Prit list:\n"); p2->next = NULL; if (head != NULL) { p2=head; while (p1 != NULL) { printf("num:%d\tscore:%.2f\n", p1->num, p1->score); p1 = p1->next; } } return 0; }

修改后的程序如下: ```c #include <stdio.h> #include <stdlib.h> #define SIZE sizeof(struct node) struct node { long num; float score; struct node *next; }; int main() { int n = 0; struct node *head = NULL, *p1, *p2; p1 = p2 = (struct node*)malloc(SIZE); printf("Input %d node data:\n", n + 1); scanf("%ld%f", &p1->num, &p1->score); while (p1->num != 0) { if (++n == 1) head = p1; else p2->next = p1; p2 = p1; p1 = (struct node*)malloc(SIZE); printf("Input %d node data:\n", n + 1); scanf("%ld%f", &p1->num, &p1->score); } p2->next = NULL; free(p1); printf("Print list:\n"); if (head != NULL) { p1 = head; while (p1 != NULL) { printf("num:%ld\tscore:%.2f\n", p1->num, p1->score); p1 = p1->next; } } return 0; } ``` 错误分析: 1. 结构体定义中的下一个节点指针未指向结构体类型,应该修改为 `struct node *next;` 2. 代码中没有包含标准库 `stdlib.h`,导致使用了 `malloc()` 和 `free()` 函数时编译器报错。 3. 在链表创建循环中,链表指针没有正确地移动到下一个节点,应该修改为 `p2 = p1;`。 4. 在链表打印循环中,循环变量使用了错误的指针,应该修改为 `p1 = head;`。 解决方法: 1. 修改结构体定义如下: ```c struct node { long num; float score; struct node *next; }; ``` 2. 添加头文件 `#include <stdlib.h>`。 3. 修改链表创建循环中的代码如下: ```c while (p1->num != 0) { if (++n == 1) head = p1; else p2->next = p1; p2 = p1; p1 = (struct node*)malloc(SIZE); printf("Input %d node data:\n", n + 1); scanf("%ld%f", &p1->num, &p1->score); } ``` 4. 修改链表打印循环中的代码如下: ```c p1 = head; while (p1 != NULL) { printf("num:%ld\tscore:%.2f\n", p1->num, p1->score); p1 = p1->next; } ``` 注意事项: 修改程序时需要注意保留原程序的意图,不能改变原程序的功能。另外,要注意变量类型、变量名、语句顺序等细节方面的错误。

相关推荐

解析这段代码 #include <stdio.h> #include <stdlib.h> typedef struct LNode{ int data1; int data2; struct LNode *next; }LNode,*Linklist; int Compare(int a,int b); //比较一元多项式的系数函数 void Attach(int a1,int a2,Linklist *Prear); //链表连接函数 void Print (Linklist L); Linklist Creat() //建表 { Linklist L,r; L=(Linklist)malloc(sizeof(Linklist)); L->next=NULL; r=L; int i,j; printf("请输入系数和指数,以空格隔开,以00结束!\n"); scanf("%d %d",&i,&j); while(i!=0&&j!=0) { Linklist p; p=(Linklist)malloc(sizeof(Linklist)); p->data1=i; p->data2=j; r->next=p; r=p; scanf("%d %d",&i,&j); } r->next=NULL; return L; } Linklist Add(Linklist P,Linklist Q) { LNode *rear,*L; rear=(Linklist)malloc(sizeof(Linklist)); L=rear; int sum; P=P->next; Q=Q->next; while(P&&Q) { switch(Compare(P->data2,Q->data2)) { case 1: Attach(Q->data1,Q->data2,&rear); Q=Q->next; break; case -1: Attach(P->data1,P->data2,&rear); P=P->next; break; case 0: sum = P->data1 + Q->data1; if(sum) Attach(sum,P->data2,&rear); P=P->next; Q=Q->next; break; } } for(P;P!=NULL;P=P->next) //没有比较完的P或Q Attach(P->data1,P->data2,&rear); for(Q;Q!=NULL;Q=Q->next) Attach(Q->data1,Q->data2,&rear); rear->next=NULL; return L; } void Print(Linklist L) { if(!L) printf("xxxx"); Linklist p; p=L->next; printf("相加结果为:\n"); while(p!=NULL) { printf("+%d*x^%d",p->data1,p->data2); p=p->next; } } void Attach(int a1,int a2,Linklist *c) { Linklist p; p=(Linklist)malloc(sizeof(Linklist)); p->data1=a1; p->data2=a2; p->next=NULL; (*c)->next=p; *c=p; } int Compare(int a,int b) { if(a>b) return 1; else if(a<b) return -1; else return 0; } int main() { Linklist P,Q,R; P=Creat(); Q=Creat(); R=Add(P,Q); Print(R); return 0; }

#include <stdio.h> #include <stdlib.h> typedef struct{ char name[5]; int need_time; int privilege; char state; }NODE; typedef struct node{ NODE data; struct node *link; }LNODE; void delay(int i) { int x,y; while(i--) { x=0 ; while(x < 10000) { y = 0; while(y < 40000) y++; x++ ; } } } void len_queue(LNODE **hpt, NODE x) { LNODE *q,*r,*p; q = *hpt; 8 r = *hpt; p = (LNODE *)malloc(sizeof(LNODE)); p->data = x; p->link = NULL; if(*hpt == NULL) *hpt = p; else { while(q!=NULL && (p->data).privilege < (q->data).privilege) { r = q; q = q->link; } if(q == NULL) r->link = p; else if(r == q) { p->link = *hpt; *hpt = p; }else { r->link = p; p->link = q; } } } void lde_queue(LNODE **hpt, NODE *cp) { LNODE *p = *hpt; *cp = (*hpt)->data; *hpt = (*hpt)->link; free(p); printf("the elected process's name : %s \n",cp->name); } void output(LNODE **hpt) { LNODE *p = *hpt; printf("Name \t Need_time \t privilege \t state\n"); do { 9 printf("%s \t %d \t\t %d \t\t %c \n", (p->data).name,(p->data).need_time,(p->data).privilege,(p->data).state); p = p->link; }while(p!= NULL); delay(4); } int main() { LNODE *head = NULL; NODE curr,temp; printf("The period time is 4s \n"); printf("please input \n"); printf("if need_time = 0,input over\n"); printf("Name\t Need_time\t privilege\n"); while(1) { scanf("%s %d %d", temp.name,&temp.need_time,&temp.privilege); if(temp.need_time == 0) break; temp.state = 'R'; len_queue(&head,temp); } while(head != NULL) { output(&head); lde_queue(&head,&curr); curr.need_time-- ; curr.privilege-- ; if(curr.need_time != 0) len_queue(&head,curr); } return 0; }

最新推荐

recommend-type

C语言结构体(struct)常见使用方法(细节问题)

主要介绍了C语言结构体(struct)常见使用方法(细节问题),需要的朋友可以参考下
recommend-type

【IAR】定义结构体出现的错误Error[e27]:

想定义两个结构体,在WARN.h 文件中定义结构体,然后再WARN.c文件中使用: ER_WARN.Span=0x0000;ER_WARN.Span=0x0000;等, 结构编译器报错:Error[e27]: Entry "ER_WARN" in module AD ( C:…… ) redefined in ...
recommend-type

深入分析C语言中结构体指针的定义与引用详解

本篇文章是对C语言中结构体指针的定义与引用进行了详细的分析介绍,需要的朋友参考下
recommend-type

浅谈Go语言中的结构体struct & 接口Interface & 反射

下面小编就为大家带来一篇浅谈Go语言中的结构体struct & 接口Interface & 反射。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
recommend-type

基于C语言+AT89C52单片机搭建的PID直流电机控制程序,用于Proteus电路仿真+源码+开发文档(高分优秀项目)

基于C语言+AT89C52单片机搭建的PID直流电机控制程序,用于Proteus电路仿真+源码+开发文档,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用~ 项目简介: 本文所介绍的基于AT89C52单片机的PID直流电机控制系统设计过程主要分为MATLAB建模、Proteus硬件电路的设计以及基于C51语法的单片机程序开发编写。本系统性质为单闭环控制,即通过转速对电机进行调速;将采用增量式编码器进行电机转速的测量,并设定PWM波形生成的开关频率为7KHz,速度回路的采样周期为14ms。 1. 所需仿真平台 单片机部分代码主要利用Keil uVision5平台进行编译,工具链采用C51。仿真电路搭建平台为Proteus 8 Professional。 2. Release版本 编译后的运行环境为Atmel AT89C52单片机平台。 3. 运行 将已发布的HEX文件放入Proteus 8 Professional仿真平台或以上版本内运行即可; 可通过修改Proteus仿真文件方波的频率(开关频率)来改变PWM相应的频率;
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。