mmdetection数据集增强
时间: 2023-10-15 12:02:49 浏览: 106
数据集增强程序
在mmdetection中,有多种方法可以进行数据集增强。一种方法是在送入机器学习之前,对数据集进行转换。这可以通过执行一系列的转换操作来实现,这些转换操作可以增强数据集的大小。另一种方法是在小批量(mini-batch)上执行这些转换。这样可以减少内存的占用,并且可以提高训练的效率。
在mmdetection中,有一些内置的方法可以用来进行数据集增强。其中包括ClassBalancedDataset、ConcatDataset和RepeatDataset等方法。这些方法可以根据需要进行选择,以实现数据集的增强效果。
如果需要自定义新的数据增强方法,可以在mmdetection的代码中新建一个augment.py文件,然后在其中编写自己的数据增强类。在初始化的声明中添加这个新的数据增强类,然后就可以在训练管道中使用它了。例如,在train_pipeline中添加一个dict(type='augment'),即可使用新的数据增强方法。
在mmdetection中,还有许多其他的数据增强方法可以使用,包括Compose、to_tensor、ToTensor、ImageToTensor、ToDataContainer、Transpose、Collect、DefaultFormatBundle、LoadAnnotations、LoadImageFromFile等。此外,还有Resize、RandomFlip、Pad、RandomCrop、Normalize、SegRescale、MinIoURandomCrop、Expand、PhotoMetricDistortion、Albu、InstaBoost、RandomCenterCropPad、AutoAugment、CutOut、Shear、Rotate、ColorTransform、EqualizeTransform、BrightnessTransform、ContrastTransform、Translate、RandomShift等方法。这些方法可以根据不同的需求选择使用,以实现不同的数据增强效果。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* *3* [mmdetection中的数据增强方法(慢慢写, 会很长)](https://blog.csdn.net/liuqiangaliuv/article/details/119682448)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"]
[ .reference_list ]
阅读全文