void Timer_A1_PWM_Init(void) { Timer_A_outputPWMParam htim = {0}; //P1.3复用输出 GPIO_setAsPeripheralModuleFunctionOutputPin(GPIO_PORT_P1, GPIO_PIN3); //时钟源选为SMCLK = 1048576 HZ htim.clockSource = TIMER_A_CLOCKSOURCE_SMCLK; //分频系数设为32 32768HZ htim.clockSourceDivider = TIMER_A_CLOCKSOURCE_DIVIDER_32; //装载值设为8192 - 1 ,周期为0.25s htim.timerPeriod = TIMER_PERIOD - 1; //P1.3 对应 TA1.1 故设为TIMER_A_CAPTURECOMPARE_REGISTER_1 定时器为1 htim.compareRegister = TIMER_A_CAPTURECOMPARE_REGISTER_1; //选择复位置位模式 htim.compareOutputMode = TIMER_A_OUTPUTMODE_RESET_SET; //设置占空比,为10% htim.dutyCycle = TIMER_PERIOD / 10 ; //P1.3 对应 TA1.1 为TIMER_A1_BASE Timer_A_outputPWM(TIMER_A1_BASE, &htim); }

时间: 2024-04-17 14:23:10 浏览: 19
根据你提供的代码,我注意到你在 Timer_A1_PWM_Init 函数中配置了 P1.3 引脚和 Timer_A1 来输出 PWM 波。 根据代码中的配置,P1.3 引脚被设置为复用输出,并且时钟源被选为 SMCLK,分频系数被设置为 32。装载值为 TIMER_PERIOD - 1,这使得 PWM 波的周期为 0.25 秒。占空比被设置为 TIMER_PERIOD / 10,这意味着占空比为 10%。 根据你的描述,如果 P1.3 引脚没有输出正确的 PWM 波形,可能有以下几个原因: 1. 引脚配置错误:请确保 P1.3 引脚已正确配置为复用输出模式。你可以检查代码中的引脚配置部分,确保正确设置了 P1.3 引脚的功能和方向。 2. 时钟源或分频系数错误:请确保时钟源和分频系数设置正确。你可以检查代码中的时钟源和分频系数设置部分,确保与你的需求相匹配。 3. 定时器配置错误:请确保 Timer_A1 已正确配置为产生 PWM 波的模式,并且占空比设置正确。你可以检查 Timer_A_outputPWM 函数中的配置参数,确保定时器模块和占空比设置正确。 如果上述方法都没有解决问题,请提供更多关于你的代码和硬件配置的信息,以便更好地帮助你解决问题。
相关问题

#include "driverlib.h" #define TIMER_PERIOD 8192 void Timer_A0_PWM_Init(void) { Timer_A_outputPWMParam htim = {0}; //P1.2复用输出 GPIO_setAsPeripheralModuleFunctionOutputPin(GPIO_PORT_P1, GPIO_PIN2); //时钟源选为SMCLK = 1048576 HZ htim.clockSource = TIMER_A_CLOCKSOURCE_SMCLK; //分频系数设为32 32768HZ htim.clockSourceDivider = TIMER_A_CLOCKSOURCE_DIVIDER_32; //装载值设为8192 - 1 ,周期为0.25s htim.timerPeriod = TIMER_PERIOD - 1; //P1.2 对应 TA0.1 故设为TIMER_A_CAPTURECOMPARE_REGISTER_1 定时器为0 htim.compareRegister = TIMER_A_CAPTURECOMPARE_REGISTER_1; //选择复位置位模式 htim.compareOutputMode = TIMER_A_OUTPUTMODE_RESET_SET; //设置占空比,为5% htim.dutyCycle = TIMER_PERIOD / 20 ; //P1.2 对应 TA0.1 为TIMER_A0_BASE Timer_A_outputPWM(TIMER_A0_BASE, &htim); } void Timer_A1_PWM_Init(void) { Timer_A_outputPWMParam htim = {0}; //P1.3复用输出 GPIO_setAsPeripheralModuleFunctionOutputPin(GPIO_PORT_P1, GPIO_PIN3); //时钟源选为SMCLK = 1048576 HZ htim.clockSource = TIMER_A_CLOCKSOURCE_SMCLK; //分频系数设为32 32768HZ htim.clockSourceDivider = TIMER_A_CLOCKSOURCE_DIVIDER_32; //装载值设为8192 - 1 ,周期为0.25s htim.timerPeriod = TIMER_PERIOD - 1; //P1.3 对应 TA1.1 故设为TIMER_A_CAPTURECOMPARE_REGISTER_1 定时器为1 htim.compareRegister = TIMER_A_CAPTURECOMPARE_REGISTER_1; //选择复位置位模式 htim.compareOutputMode = TIMER_A_OUTPUTMODE_RESET_SET; //设置占空比,为10% htim.dutyCycle = TIMER_PERIOD / 10 ; //P1.3 对应 TA1.1 为TIMER_A1_BASE Timer_A_outputPWM(TIMER_A1_BASE, &htim); }

这段代码在前面的基础上又新增了一个函数 Timer_A1_PWM_Init,用于初始化 Timer_A1 的 PWM 功能。 与 Timer_A0_PWM_Init 函数相似,Timer_A1_PWM_Init 函数也首先引入了 driverlib 库,并定义了常量 TIMER_PERIOD。 在函数内部,同样创建了一个 Timer_A_outputPWMParam 结构体对象 htim,并将其各个成员初始化为默认值。然后使用 GPIO_setAsPeripheralModuleFunctionOutputPin 函数将 P1.3 设置为复用输出功能。 接下来,设置定时器的时钟源为 SMCLK(1048576 HZ),分频系数为 32(32768HZ)。将装载值设置为 TIMER_PERIOD - 1,即 8191,从而使得定时器的周期为 0.25 秒。 然后,将比较寄存器设置为 TIMER_A_CAPTURECOMPARE_REGISTER_1,对应于 P1.3 对应的 TA1.1。选择复位/置位模式作为比较输出模式。 最后,设置占空比为 TIMER_PERIOD / 10,即 10%。调用 Timer_A_outputPWM 函数,将 TIMER_A1_BASE 和 htim 作为参数传入,以实现 PWM 输出。 总的来说,这段代码的作用是初始化 Timer_A1 的 PWM 功能,并设置 P1.3 对应的 TA1.1 输出的占空比为 10%。

单片机为msp430f5529。void Timer_A1_PWM_Init(void) { Timer_A_outputPWMParam htim = {0}; //P1.3复用输出 GPIO_setAsPeripheralModuleFunctionOutputPin(GPIO_PORT_P1, GPIO_PIN3); //时钟源选为SMCLK = 1048576 HZ htim.clockSource = TIMER_A_CLOCKSOURCE_SMCLK; //分频系数设为32 32768HZ htim.clockSourceDivider = TIMER_A_CLOCKSOURCE_DIVIDER_32; //装载值设为8192 - 1 ,周期为0.25s htim.timerPeriod = TIMER_PERIOD - 1; //P1.3 对应 TA1.1 故设为TIMER_A_CAPTURECOMPARE_REGISTER_1 定时器为1 htim.compareRegister = TIMER_A_CAPTURECOMPARE_REGISTER_1; //选择复位置位模式 htim.compareOutputMode = TIMER_A_OUTPUTMODE_RESET_SET; //设置占空比,为10% htim.dutyCycle = TIMER_PERIOD / 10 ; //P1.3 对应 TA1.1 为TIMER_A1_BASE Timer_A_outputPWM(TIMER_A1_BASE, &htim); }

感谢提供更多的信息。根据你提供的代码和描述,我看不出任何明显的问题。这段代码应该能够使 MSP430F5529 的 P1.3 引脚输出 PWM 波。 如果你依然无法得到预期的 PWM 波形,可能需要进一步检查以下几个方面: 1. 确认引脚连接:请确保你正确地将 P1.3 引脚连接到外部电路,并且该电路能够接收并显示 PWM 信号。 2. 检查时钟源和分频系数:请确保时钟源设置为 SMCLK(1.048576 MHz)并且分频系数设置为 32。这样可以生成一个 32768 Hz 的时钟信号,用于产生 PWM 波。 3. 检查装载值和占空比:请确保装载值设置为 TIMER_PERIOD - 1(8192 - 1),这将产生一个周期为 0.25 秒的 PWM 波。占空比设置为 TIMER_PERIOD / 10,这将使占空比为 10%。 如果你已经确认上述方面都正确无误,但仍然无法得到正确的 PWM 波形,请提供更多关于你的硬件配置和其他相关代码的信息,以便更好地帮助你解决问题。

相关推荐

最新推荐

recommend-type

scrapy练习 获取喜欢的书籍

主要是根据网上大神做的 项目一 https://zhuanlan.zhihu.com/p/687522335
recommend-type

基于PyTorch的Embedding和LSTM的自动写诗实验.zip

基于PyTorch的Embedding和LSTM的自动写诗实验LSTM (Long Short-Term Memory) 是一种特殊的循环神经网络(RNN)架构,用于处理具有长期依赖关系的序列数据。传统的RNN在处理长序列时往往会遇到梯度消失或梯度爆炸的问题,导致无法有效地捕捉长期依赖。LSTM通过引入门控机制(Gating Mechanism)和记忆单元(Memory Cell)来克服这些问题。 以下是LSTM的基本结构和主要组件: 记忆单元(Memory Cell):记忆单元是LSTM的核心,用于存储长期信息。它像一个传送带一样,在整个链上运行,只有一些小的线性交互。信息很容易地在其上保持不变。 输入门(Input Gate):输入门决定了哪些新的信息会被加入到记忆单元中。它由当前时刻的输入和上一时刻的隐藏状态共同决定。 遗忘门(Forget Gate):遗忘门决定了哪些信息会从记忆单元中被丢弃或遗忘。它也由当前时刻的输入和上一时刻的隐藏状态共同决定。 输出门(Output Gate):输出门决定了哪些信息会从记忆单元中输出到当前时刻的隐藏状态中。同样地,它也由当前时刻的输入和上一时刻的隐藏状态共同决定。 LSTM的计算过程可以大致描述为: 通过遗忘门决定从记忆单元中丢弃哪些信息。 通过输入门决定哪些新的信息会被加入到记忆单元中。 更新记忆单元的状态。 通过输出门决定哪些信息会从记忆单元中输出到当前时刻的隐藏状态中。 由于LSTM能够有效地处理长期依赖关系,它在许多序列建模任务中都取得了很好的效果,如语音识别、文本生成、机器翻译、时序预测等。
recommend-type

基于Java的云计算平台设计源码

云计算平台设计源码:该项目基于Java开发,包含126个文件,主要使用Java、JavaScript、HTML和CSS语言。该项目是一个云计算平台,旨在为用户提供一个高效、灵活的云计算服务,包括资源管理、虚拟化技术、分布式存储等功能,以满足不同用户的计算和存储需求。
recommend-type

grpcio-1.41.0-cp38-cp38-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

grpcio-1.44.0-cp310-cp310-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。