total_buy_count = (data[data['type']==1].groupby(['customer_id'])['type'].count().to_frame().rename(columns={'type':'total'}))
时间: 2023-10-07 18:08:58 浏览: 76
这段代码是对一个名为 data 的数据集进行处理,首先筛选出 type 列中值为 1 的行,然后按照 customer_id 进行分组,对每个分组计算 type 列的数量,并将结果转化为 DataFrame 格式,列名为 total。最后将处理结果赋值给变量 total_buy_count。可以理解为统计每个顾客在数据集中购买商品的次数。
相关问题
如何在 这段储存过程中加分页 create PROCEDURE [dbo].[Z_SelfHelpOrderingQuery] @CorpId varchar(20), @EnCode varchar(20), @MealTypeId varchar(20), @AreaId varchar(20), @CheackMark varchar(20), @MenuName varchar(20), @Start varchar(20), @End varchar(20), @MenuCode varchar(20), @BilltypeId varchar(20) AS begin if (@CheackMark = 1) BEGIN select A.MenuId as id, CONVERT(varchar(10), A.MenuDate, 120) as MenuDate, CONVERT(varchar(10), A.SalesDate, 120) as SalesDate, A.MenuCode, A.MealType, A.MenuName, A.CheackMark, A.ShortName, A.BilltypeId, A.CreateUserId, A.MenuCycleId, A.EnCode, A.MealTypeId,B.AreaId,A.CreateUserName,A.ModifyUserName from YE_School_Menu A WITH(NOLOCK) left join YE_Client_Customer B WITH(NOLOCK) on A.CorpId=B.CorpId And B.EnabledMark=1 and A.EnCode=B.EnCode where A.CorpId=@CorpId and A.MenuCode like @MenuCode and A.CheackMark=@CheackMark and A.BilltypeId=@BilltypeId and A.MealTypeId like @MealTypeId and A.MenuName like @MenuName and A.MenuDate >= @Start and A.MenuDate<=@End and B.AreaId like @AreaId and A.EnCode like @EnCode group by A.MenuId,A.MenuDate,A.MenuCode,A.MealType,A.MenuName,A.CheackMark,A.SalesDate,A.ShortName,A.CreateUserId,A.MenuCycleId,A.EnCode,A.MealTypeId,A.BilltypeId ,B.AreaId,A.CreateUserName,A.ModifyUserName order by A.MenuDate,A.ShortName,A.MealTypeId,A.MenuName,A.SalesDate END select A.MenuId as id, CONVERT(varchar(10), A.MenuDate, 120) as MenuDate, CONVERT(varchar(10), A.SalesDate, 120) as SalesDate, A.MenuCode, A.MealType, A.MenuName, A.CheackMark, A.ShortName, A.BilltypeId, A.CreateUserId, A.MenuCycleId, A.EnCode, A.MealTypeId,B.AreaId,A.CreateUserName,A.ModifyUserName from YE_School_Menu A WITH(NOLOCK) left join YE_Client_Customer B WITH(NOLOCK) on A.CorpId=B.CorpId And B.EnabledMark=1 and A.EnCode=B.EnCode where A.CorpId=@CorpId and A.MenuCode like @MenuCode and A.BilltypeId=@BilltypeId and A.MealTypeId like @MealTypeId and A.MenuName like @MenuName and A.MenuDate >= @Start and A.MenuDate<=@End and B.AreaId like @AreaId and A.EnCode like @EnCode group by A.MenuId,A.MenuDate,A.MenuCode,A.MealType,A.MenuName,A.CheackMark,A.SalesDate,A.ShortName,A.CreateUserId,A.MenuCycleId,A.EnCode,A.MealTypeId,A.BilltypeId ,B.AreaId,A.CreateUserName,A.ModifyUserName order by A.MenuDate,A.ShortName,A.MealTypeId,A.MenuName,A.SalesDate
以下是在存储过程中添加分页的示例代码:
```
CREATE PROCEDURE [dbo].[Z_SelfHelpOrderingQuery]
@CorpId varchar(20),
@EnCode varchar(20),
@MealTypeId varchar(20),
@AreaId varchar(20),
@CheackMark varchar(20),
@MenuName varchar(20),
@Start varchar(20),
@End varchar(20),
@MenuCode varchar(20),
@BilltypeId varchar(20),
@PageNumber INT,
@PageSize INT
AS
BEGIN
SET NOCOUNT ON;
DECLARE @Offset INT = (@PageNumber - 1) * @PageSize;
-- First query for getting total records
DECLARE @TotalRecords INT;
SELECT @TotalRecords = COUNT(*) FROM YE_School_Menu WITH(NOLOCK)
LEFT JOIN YE_Client_Customer WITH(NOLOCK) ON YE_School_Menu.CorpId=YE_Client_Customer.CorpId AND YE_School_Menu.EnCode=YE_Client_Customer.EnCode
WHERE YE_School_Menu.CorpId=@CorpId AND YE_School_Menu.MenuCode LIKE @MenuCode AND YE_School_Menu.BilltypeId=@BilltypeId AND YE_School_Menu.MealTypeId LIKE @MealTypeId AND YE_School_Menu.MenuName LIKE @MenuName AND YE_School_Menu.MenuDate >= @Start AND YE_School_Menu.MenuDate <= @End AND YE_Client_Customer.AreaId LIKE @AreaId AND YE_School_Menu.EnCode LIKE @EnCode AND YE_School_Menu.CheackMark=@CheackMark AND YE_Client_Customer.EnabledMark=1;
-- Second query for getting paged data
SELECT *
FROM (
SELECT ROW_NUMBER() OVER (ORDER BY YE_School_Menu.MenuDate, YE_School_Menu.ShortName, YE_School_Menu.MealTypeId, YE_School_Menu.MenuName, YE_School_Menu.SalesDate) AS RowNum,
YE_School_Menu.MenuId AS id,
CONVERT(varchar(10), YE_School_Menu.MenuDate, 120) AS MenuDate,
CONVERT(varchar(10), YE_School_Menu.SalesDate, 120) AS SalesDate,
YE_School_Menu.MenuCode,
YE_School_Menu.MealType,
YE_School_Menu.MenuName,
YE_School_Menu.CheackMark,
YE_School_Menu.ShortName,
YE_School_Menu.BilltypeId,
YE_School_Menu.CreateUserId,
YE_School_Menu.MenuCycleId,
YE_School_Menu.EnCode,
YE_School_Menu.MealTypeId,
YE_Client_Customer.AreaId,
YE_School_Menu.CreateUserName,
YE_School_Menu.ModifyUserName
FROM YE_School_Menu WITH(NOLOCK)
LEFT JOIN YE_Client_Customer WITH(NOLOCK) ON YE_School_Menu.CorpId=YE_Client_Customer.CorpId AND YE_School_Menu.EnCode=YE_Client_Customer.EnCode
WHERE YE_School_Menu.CorpId=@CorpId AND YE_School_Menu.MenuCode LIKE @MenuCode AND YE_School_Menu.BilltypeId=@BilltypeId AND YE_School_Menu.MealTypeId LIKE @MealTypeId AND YE_School_Menu.MenuName LIKE @MenuName AND YE_School_Menu.MenuDate >= @Start AND YE_School_Menu.MenuDate <= @End AND YE_Client_Customer.AreaId LIKE @AreaId AND YE_School_Menu.EnCode LIKE @EnCode AND YE_School_Menu.CheackMark=@CheackMark AND YE_Client_Customer.EnabledMark=1
) AS PaginatedData
WHERE PaginatedData.RowNum > @Offset AND PaginatedData.RowNum <= (@Offset + @PageSize)
ORDER BY PaginatedData.MenuDate, PaginatedData.ShortName, PaginatedData.MealTypeId, PaginatedData.MenuName, PaginatedData.SalesDate;
-- Third query for getting total pages
DECLARE @TotalPages INT = CEILING(CAST(@TotalRecords AS FLOAT) / @PageSize);
SELECT @TotalPages AS TotalPages;
END
```
在调用存储过程时,传入页码和每页记录数参数即可获取指定页码的数据。例如:
```
EXEC Z_SelfHelpOrderingQuery @CorpId='1', @EnCode='', @MealTypeId='', @AreaId='', @CheackMark='1', @MenuName='', @Start='2022-01-01', @End='2022-12-31', @MenuCode='', @BilltypeId='1', @PageNumber=1, @PageSize=10;
```
以上示例中,@PageNumber=1 表示获取第一页的数据,@PageSize=10 表示每页显示 10 条记录。
这个数据具体如下:我现在有个xlxs格式的数据集,其中包括以下信息:Unique customer ID Churn Flag Tenure for using the platform (months) Preferred login device of customer City tier Distance in between warehouse to home of customer The age of customer(eg.2:20-29) Marital status of customer Gender of customer Number of hours spend Preferred order category of customer in last month Satisfactory score of customer on service Total number of Streamers Followed by particular customer Any complaint has been raised in last month Percentage increases in order from last year Total number of coupon has been used in last month Total number of orders has been places in last month Day Since last order by customer Average cashback in last month 它们的缩写分别是:CustomerID Churn Tenure PreferredLoginDevice CityTier WarehouseToHome AgeGroup MaritalStatus Gender HourSpendOnApp PreferedOrderCat SatisfactionScore NumberOfStreamerFollowed Complain OrderAmountHikeFromlastYear CouponUsed OrderCount DaySinceLastOrder DiscountAmount。请你帮我写一个完整的python代码,完成你说的以上步骤
好的,以下是一个基本的Python代码示例,实现了你所说的步骤:
```python
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
from lifetimes import BetaGeoFitter
from lifetimes.plotting import plot_frequency_recency_matrix, plot_probability_alive_matrix, plot_period_transactions
%matplotlib inline
# 1. 数据清洗
df = pd.read_excel('data.xlsx')
df.drop_duplicates(inplace=True)
df.dropna(inplace=True)
# 2. 探索性数据分析
plt.scatter(df['HourSpendOnApp'], df['OrderCount'])
plt.xlabel('HourSpendOnApp')
plt.ylabel('OrderCount')
# 3. 用户细分
X = df[['HourSpendOnApp', 'OrderCount']]
kmeans = KMeans(n_clusters=3, random_state=0).fit(X)
df['Cluster'] = kmeans.labels_
# 4. 用户转化率分析
bgf = BetaGeoFitter(penalizer_coef=0.0)
bgf.fit(df['Tenure'], df['OrderCount'], df['DaySinceLastOrder'])
plot_frequency_recency_matrix(bgf)
plot_probability_alive_matrix(bgf)
plot_period_transactions(bgf)
# 5. 用户留存率分析
from lifetimes.plotting import plot_churn_attribution
plot_churn_attribution(bgf, df['DaySinceLastOrder'], df['Churn'])
# 6. 用户行为预测
from sklearn.linear_model import LinearRegression
X = df[['HourSpendOnApp', 'OrderCount']]
y = df['DiscountAmount']
model = LinearRegression().fit(X, y)
print(model.score(X, y))
```
其中,前三行代码读取数据并清洗了数据,第4步使用了lifetimes库计算了用户的转化率,第5步使用了lifetimes库计算了用户的留存率,第6步使用了sklearn库建立了线性回归模型,预测了用户的折扣金额。你可以根据自己的需求进行修改和扩展。
阅读全文