二位连续傅里叶变换sin(2πut+2πvz)的逆变换

时间: 2023-11-19 16:03:16 浏览: 44
二维连续傅里叶变换的逆变换可以通过积分运算得到。 对于给定的二维连续傅里叶变换表达式sin(2πut 2πvz),我们可以使用逆变换求得原始函数。 二维连续傅里叶变换的逆变换公式为: f(t, z) = ∫∫F(u, v)e^(2πi(ut + vz))dudv 其中,F(u, v)是原始函数的二维傅里叶变换,f(t, z)是原始函数。 根据给定函数sin(2πut 2πvz)的二维傅里叶变换为: F(u, v) = 1/2i * [δ(u - t, v - z) - δ(u + t, v + z)] 将给定函数和其傅里叶变换代入逆变换公式中,得到: f(t, z) = ∫∫[1/2i * (δ(u - t, v - z) - δ(u + t, v + z))] * e^(2πi(ut + vz))dudv 可以进行积分运算,并应用傅里叶的性质,我们可以得到逆变换的结果: f(t, z) = 1/4i * [e^(2πi(ut + vz)) - e^(-2πi(ut + vz))] 综上所述,二维连续傅里叶变换sin(2πut 2πvz)的逆变换为: f(t, z) = 1/4i * [e^(2πi(ut + vz)) - e^(-2πi(ut + vz))]
相关问题

计算f(x,y)=sin(2πux+2πvy)的二维傅里叶变换结果

设f(x,y)的二维傅里叶变换为F(u,v),则有: F(u,v) = ∬f(x,y)exp(-i2π(ux+vy))dxdy 代入f(x,y)=sin(2πux 2πvy)有: F(u,v) = ∬sin(2πux 2πvy)exp(-i2π(ux+vy))dxdy 根据双角公式,上式可化为: F(u,v) = 1/2i∬[exp(i2πu(x-y))-exp(i2πu(x+y))]exp(-i2πvy)dxdy 对于第一项,利用一维傅里叶变换的性质可知: ∫exp(i2πux)dx = δ(u) 其中δ(u)为狄拉克δ函数,因此第一项可化为: 1/2i∬δ(u-(v-y))exp(-i2πvy)dxdy = 1/2iexp(-i2πuv) 对于第二项,同样利用一维傅里叶变换的性质可知: ∫exp(i2πu(x+y))dx = δ(u-v) 因此第二项可化为: 1/2i∬δ(u-(v+y))exp(-i2πvy)dxdy = 1/2iexp(-i2πuv) 综上所述,F(u,v) = 1/2i[exp(-i2πuv) + exp(-i2πuv)] = cos(2πuv)。因此,f(x,y)=sin(2πux 2πvy)的二维傅里叶变换结果为cos(2πuv)。

matlab实现傅里叶变换_傅立叶变换求解y''+2*y'+2*y=sin(t)

好的,这里我可以给你一个简单的例子,演示如何使用 MATLAB 对偏微分方程 y''+2y'+2y=sin(t) 进行求解。首先,我们需要将这个偏微分方程转化为代数方程。通过傅里叶变换,我们可以将该方程转化为: $$ (-\omega^2 + 2i\omega + 2)Y(\omega) = \frac{1}{2i} \frac{1}{1+i\omega} $$ 其中 $Y(\omega)$ 是原方程的傅里叶变换,$\omega$ 是频率,$i$ 是虚数单位。 现在,我们来使用 MATLAB 对该方程进行求解: ```matlab % 求解 y''+2y'+2y=sin(t) syms t w Y; y = ifourier(Y, t); % 傅里叶反变换 eqn = diff(y, t, t) + 2*diff(y, t) + 2*y == sin(t); Y = fourier(eqn, t); % 傅里叶变换 % 将代数方程写成矩阵形式 A = -w^2 + 2i*w + 2; B = 1/(2i*(1+i*w)); C = A*Y - B; % 求解矩阵方程 Y = solve(C, Y); % 绘制时域函数图像 y = ifourier(Y, w); t = linspace(0, 10, 1000); plot(t, double(subs(y, t))); ``` 在这个例子中,我们首先使用符号计算工具箱中的 `ifourier` 和 `fourier` 函数,将原方程和傅里叶变换形式转化为符号表达式。然后,我们将代数方程写成矩阵形式,并使用 `solve` 函数求解矩阵方程。最后,我们使用 `ifourier` 函数将傅里叶反变换回时域函数,并绘制了函数图像。 需要注意的是,这个例子中的解析解比较复杂,可能无法得到一个精确的数值解。因此,如果你需要得到一个数值解,可以考虑使用数值求解方法,比如有限元方法、有限差分方法等。

相关推荐

最新推荐

recommend-type

数字信号处理实验报告-(2)-离散傅里叶变换(DFT).doc

数字信号处理实验报告-(2)-离散傅里叶变换(DFT),有代码,几乎每行都有注释,高清原图,完全能看得懂的那种
recommend-type

傅立叶变换与逆变换的详细介绍

傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或...在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的
recommend-type

短时傅里叶变换、小波变换、Wigner-Ville分布进行处理语音matlab

请用麦克风录取自己的一段语音信号(2秒),根据自己声音的特点...要求: 1)分别用MATLAB作出短时傅立叶变换、Wigner-Ville分布和小波变换的时频分布图 2)列出公式,画出所有图谱 3) 讨论三种时频分布的结果与特点
recommend-type

使用python实现离散时间傅里叶变换的方法

离散时间傅里叶变换(Discrete Time Fourier Transform, DTFT)是一种用于分析离散信号频率成分的数学工具。在Python中实现DTFT可以帮助我们理解信号处理的基础,并在实际应用中分析数字信号。下面我们将详细讨论...
recommend-type

数字信号处理-快速傅里叶变换FFT实验报告

西安交通大学数字信号处理-快速傅里叶变换FFT实验报告
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。