outputs = self.deepsort.update(bbox_xywh, cls_conf, ori_img)什么作用
时间: 2024-06-03 13:10:33 浏览: 178
outputs = self.deepsort.update(bbox_xywh, cls_conf, ori_img)是一个代码语句,它的作用是通过输入的目标边界框bbox_xywh、类别置信度cls_conf和原始图像ori_img,对目标进行跟踪和更新,返回更新后的目标框及id等信息。其中,deepsort是一个深度学习的目标跟踪算法。
相关问题
import numpy import scipy.special class NeuralNetwork(): def __init__(self,inputnodes,hiddennodes,outputnodes,learningrate): self.inodes=inputnodes self.hnodes=hiddennodes self.onodes=outputnodes self.lr=learningrate self.wih=numpy.random.normal(0.0,pow(self.hnodes,-0.5),(self.hnodes,self.inodes)) self.who=numpy.random.normal(0.0,pow(self.onodes,-0.5),(self.onodes,self.hnodes)) self.activation_function=lambda x:scipy.special.expit(x) pass def train(self,input_list,target_list): inputs=numpy.array(input_list,ndmin=2).T targets=numpy.array(target_list,ndmin=2).T hidden_inputs=numpy.dot(self.wih,inputs) hidden_outputs=self.activation_function(hidden_inputs) final_inputs=numpy.dot(self.who,hidden_outputs) final_outputs=self.activation_function(final_inputs) output_errors=targets-final_outputs hidden_errors=numpy.dot(self.who.T,output_errors) self.who+=self.lr*numpy.dot((output_errors*final_outputs*(1.0-final_outputs)),numpy.transpose(hidden_outputs)) self.wih+=self.lr*numpy.dot((hidden_errors*hidden_outputs*(1.0-hidden_outputs)),numpy.transpose(inputs)) pass def query(self,input_list): inputs=numpy.array(input_list,ndmin=2).T hidden_inputs=numpy.dot(self.wih,inputs) hidden_outputs=self.activation_function(hidden_inputs) final_inputs=numpy.dot(self.who,hidden_outputs) final_outputs=self.activation_function(final_inputs) return final_outputs print('n')写一下注释
以下是对代码的注释:
```python
import numpy
import scipy.special
class NeuralNetwork():
def __init__(self,inputnodes,hiddennodes,outputnodes,learningrate):
# 初始化神经网络的输入层、隐藏层、输出层的节点数以及学习率
self.inodes = inputnodes
self.hnodes = hiddennodes
self.onodes = outputnodes
self.lr = learningrate
# 初始化输入层到隐藏层和隐藏层到输出层的权重
# 对权重进行随机初始化,取值范围为均值为0,标准差为节点数的负平方根
self.wih = numpy.random.normal(0.0, pow(self.hnodes, -0.5), (self.hnodes, self.inodes))
self.who = numpy.random.normal(0.0, pow(self.onodes, -0.5), (self.onodes, self.hnodes))
# 定义激活函数为 sigmoid 函数
self.activation_function = lambda x: scipy.special.expit(x)
def train(self,input_list,target_list):
# 将输入列表和目标列表转换为二维数组
inputs = numpy.array(input_list, ndmin=2).T
targets = numpy.array(target_list, ndmin=2).T
# 计算隐藏层的输入和输出
hidden_inputs = numpy.dot(self.wih, inputs)
hidden_outputs = self.activation_function(hidden_inputs)
# 计算输出层的输入和输出
final_inputs = numpy.dot(self.who, hidden_outputs)
final_outputs = self.activation_function(final_inputs)
# 计算输出层误差和隐藏层误差
output_errors = targets - final_outputs
hidden_errors = numpy.dot(self.who.T, output_errors)
# 更新隐藏层到输出层和输入层到隐藏层的权重
self.who += self.lr * numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)), numpy.transpose(hidden_outputs))
self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), numpy.transpose(inputs))
def query(self,input_list):
# 将输入列表转换为二维数组
inputs = numpy.array(input_list, ndmin=2).T
# 计算隐藏层的输入和输出
hidden_inputs = numpy.dot(self.wih, inputs)
hidden_outputs = self.activation_function(hidden_inputs)
# 计算输出层的输入和输出
final_inputs = numpy.dot(self.who, hidden_outputs)
final_outputs = self.activation_function(final_inputs)
# 返回最终输出
return final_outputs
# 创建神经网络实例
input_nodes = 3
hidden_nodes = 3
output_nodes = 3
learning_rate = 0.3
n = NeuralNetwork(input_nodes,hidden_nodes,output_nodes,learning_rate)
# 使用训练数据进行训练
training_data = [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8, 0.9]]
for data in training_data:
n.train(data, data)
# 使用测试数据进行测试
test_data = [0.2, 0.5, 0.8]
print(n.query(test_data))
```
这个神经网络实现了一个简单的自编码器,训练数据和测试数据都是由一些简单的数字组成。
def model(self): num_classes = self.config.get("CNN_training_rule", "num_classes") seq_length = self.config.get("CNN_training_rule", "seq_length") conv1_num_filters = self.config.get("CNN_training_rule", "conv1_num_filters") conv1_kernel_size = self.config.get("CNN_training_rule", "conv1_kernel_size") conv2_num_filters = self.config.get("CNN_training_rule", "conv2_num_filters") conv2_kernel_size = self.config.get("CNN_training_rule", "conv2_kernel_size") hidden_dim = self.config.get("CNN_training_rule", "hidden_dim") dropout_keep_prob = self.config.get("CNN_training_rule", "dropout_keep_prob") model_input = keras.layers.Input((seq_length,1), dtype='float64') # conv1形状[batch_size, seq_length, conv1_num_filters] conv_1 = keras.layers.Conv1D(conv1_num_filters, conv1_kernel_size, padding="SAME")(model_input) conv_2 = keras.layers.Conv1D(conv2_num_filters, conv2_kernel_size, padding="SAME")(conv_1) max_poolinged = keras.layers.GlobalMaxPool1D()(conv_2) full_connect = keras.layers.Dense(hidden_dim)(max_poolinged) droped = keras.layers.Dropout(dropout_keep_prob)(full_connect) relued = keras.layers.ReLU()(droped) model_output = keras.layers.Dense(num_classes, activation="softmax")(relued) model = keras.models.Model(inputs=model_input, outputs=model_output) # model.compile(loss="categorical_crossentropy", # optimizer="adam", # metrics=["accuracy"]) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) print(model.summary()) return model给这段代码每行加上注释
```
def model(self):
# 获取配置文件中的参数
num_classes = self.config.get("CNN_training_rule", "num_classes") #分类数
seq_length = self.config.get("CNN_training_rule", "seq_length") #序列长度
conv1_num_filters = self.config.get("CNN_training_rule", "conv1_num_filters") #第一层卷积核数量
conv1_kernel_size = self.config.get("CNN_training_rule", "conv1_kernel_size") #第一层卷积核大小
conv2_num_filters = self.config.get("CNN_training_rule", "conv2_num_filters") #第二层卷积核数量
conv2_kernel_size = self.config.get("CNN_training_rule", "conv2_kernel_size") #第二层卷积核大小
hidden_dim = self.config.get("CNN_training_rule", "hidden_dim") #全连接层隐藏层大小
dropout_keep_prob = self.config.get("CNN_training_rule", "dropout_keep_prob") #dropout保留率
# 定义模型输入
model_input = keras.layers.Input((seq_length,1), dtype='float64')
# 第一层卷积
conv_1 = keras.layers.Conv1D(conv1_num_filters, conv1_kernel_size, padding="SAME")(model_input)
# 第二层卷积
conv_2 = keras.layers.Conv1D(conv2_num_filters, conv2_kernel_size, padding="SAME")(conv_1)
# 全局最大池化
max_poolinged = keras.layers.GlobalMaxPool1D()(conv_2)
# 全连接层
full_connect = keras.layers.Dense(hidden_dim)(max_poolinged)
# dropout层
droped = keras.layers.Dropout(dropout_keep_prob)(full_connect)
# relu激活层
relued = keras.layers.ReLU()(droped)
# 输出层
model_output = keras.layers.Dense(num_classes, activation="softmax")(relued)
# 定义模型
model = keras.models.Model(inputs=model_input, outputs=model_output)
# 编译模型
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
# 打印模型结构
print(model.summary())
return model
```
阅读全文