except: pass ui.showimg(image) QApplication.processEvents()解释

时间: 2024-02-10 14:55:43 浏览: 148
这段代码的作用是捕获异常,并在程序运行时展示一张图片,并让应用程序处理事件。具体来说,如果try语句块中出现异常,则程序将跳过该语句块并执行except语句块中的代码。其中,pass表示什么也不做,只是占位符。而ui.showimg(image)则展示指定的图片,而QApplication.processEvents()则让应用程序处理当前所有待处理的事件,保证程序流畅运行。
相关问题

代码解释# Process detections for i, det in enumerate(pred): # detections per image if webcam: # batch_size >= 1 p, s, im0 = path[i], '%g: ' % i, im0s[i].copy() else: p, s, im0 = path, '', im0s save_path = str(Path(out) / Path(p).name) s += '%gx%g ' % img.shape[2:] # print string gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh if det is not None and len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class s += '%g %ss, ' % (n, names[int(c)]) # add to string # Write results for *xyxy, conf, cls in det: if save_txt: # Write to file xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh with open(save_path[:save_path.rfind('.')] + '.txt', 'a') as file: file.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format if save_img or view_img: # Add bbox to image label = '%s %.2f' % (names[int(cls)], conf) if label is not None: if (label.split())[0] == 'person': people_coords.append(xyxy) # plot_one_box(xyxy, im0, line_thickness=3) plot_dots_on_people(xyxy, im0) # Plot lines connecting people distancing(people_coords, im0, dist_thres_lim=(100, 150)) # Print time (inference + NMS) print('%sDone. (%.3fs)' % (s, t2 - t1)) # Stream results if 1: ui.showimg(im0) if cv2.waitKey(1) == ord('q'): # q to quit raise StopIteration # Save results (image with detections) if save_img: if dataset.mode == 'images': cv2.imwrite(save_path, im0) else: if vid_path != save_path: # new video vid_path = save_path if isinstance(vid_writer, cv2.VideoWriter): vid_writer.release() # release previous video writer fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h)) vid_writer.write(im0)

这段代码是目标检测算法的输出结果处理部分。主要包括以下几个步骤: 1. 对每张图片的检测结果进行处理,包括将检测框从输入图像的尺寸缩放到输出图像的尺寸,并将结果写入文本文件中。 2. 对每个类别的检测结果统计数量,并将数量和类别名称添加到输出字符串中。 3. 对每个检测到的目标绘制边界框,并在边界框上标注类别和置信度。 4. 如果检测到的目标是人,则将其坐标保存在列表中,并在图像上绘制点和连线进行社交距离监测。 5. 将处理后的图像展示出来,并将图像保存到文件中。

解释下这段代码<script> var _self; export default { data() { return { showImg:true, upload :'upload/', orders:[], u_id : 0, http:'' } }, onLoad:function(e){ _self=this; _self.uid = getApp().globalData.u_id; _self.http = getApp().globalData.http; this.getOrders(); }, methods: { getOrders:function(){ uni.request({ url: _self.http+'item/ItemList', method:'GET', data: { uid:_self.uid }, success: (res) => { var date=res.data; for (let i in date) { let d = new Date(date[i].o_time); let year = d.getFullYear(); let month = d.getMonth() + 1; let day = d.getDate(); let hh = d.getHours(); let mm = d.getMinutes(); let ss = d.getSeconds(); date[i].o_time = year+"-"+month+"-"+day+" "+hh+":"+mm+":"+ss; } _self.orders=res.data; } }); }, toDetails(id){ uni.navigateTo({ url: 'scroll/scroll?u_id='+id, }); } } } </script>

这是一个使用 Vue.js 框架编写的前端页面代码,其中包含了一个 Vue 组件。该组件包含了一个数据对象,其中包括了一个布尔类型的变量 showImg、一个字符串类型的变量 upload、一个数组类型的变量 orders、一个整型变量 u_id 和一个字符串类型的变量 http。除此之外,该组件还包含了一个 onLoad() 方法,在页面加载时会被触发,其中 _self=this 将当前组件对象的 this 赋值给变量 _self,接着获取了全局变量 getApp().globalData 中的 u_id 和 http,并调用了 getOrders() 方法。该组件还包含了一个 methods 对象,其中包含了两个方法:getOrders() 和 toDetails(id)。其中 getOrders() 方法使用 uni.request() 方法向服务器请求数据,并在请求成功时对返回的数据进行处理,将订单时间格式化后再赋值给 orders 变量。toDetails(id) 方法则是用于跳转到详情页的方法,通过调用 uni.navigateTo() 方法实现。
阅读全文

相关推荐

以下代码出现错误:NameError: name 'left_image' is not defined。代码如下:@pyqtSlot() def on_pushButton_5_clicked(self): # 读取左相机图像 left_image_path = '1_left.JPG' # 替换为实际图像的路径 left_image = cv2.imread(left_image_path) # 转换为HSV颜色空间 hsv_image = cv2.cvtColor(left_image, cv2.COLOR_BGR2HSV) # 定义红色的HSV颜色范围 lower_red = np.array([0, 100, 100]) upper_red = np.array([10, 255, 255]) # 对图像进行红色阈值处理 red_mask = cv2.inRange(hsv_image, lower_red, upper_red) # 执行形态学操作,去除噪声 kernel = np.ones((5, 5), np.uint8) red_mask = cv2.morphologyEx(red_mask, cv2.MORPH_OPEN, kernel) # 查找红色轮廓 contours, _ = cv2.findContours(red_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # 保留最大的两个轮廓 contours = sorted(contours, key=cv2.contourArea, reverse=True)[:2] # 遍历轮廓并绘制圆心和坐标 for contour in contours: # 计算轮廓的最小外接圆 (x, y), radius = cv2.minEnclosingCircle(contour) center = (int(x), int(y)) radius = int(radius) # 绘制圆心 cv2.circle(left_image, center, 3, (0, 255, 0), -1) # 绘制圆形轮廓 cv2.circle(left_image, center, radius, (0, 0, 255), 2) # 绘制坐标 text = f'({int(x)}, {int(y)})' cv2.putText(left_image, text, (int(x) + 10, int(y) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) cv2.imshow('Result', left_image) cv2.waitKey(0) showImg = cv2.cvtColor('image', cv2.COLOR_BGR2RGB) qImgae = QImage(showImg, showImg.shape[1], showImg.shape[0], showImg.shape[1]*3, QImage.Format_RGB888) self.label.setPixmap(QPixmap(qImgae).scaled(self.label.width(), self.label.height(), Qt.KeepAspectRatio))

最新推荐

recommend-type

Thymeleaf显示base64字符串为图片.docx

这里我们创建一个名为`showimg.html`的文件: ```html &lt;!DOCTYPE html&gt; &lt;html xmlns:th="http://www.thymeleaf.org"&gt; &lt;title&gt;Insert title here &lt;!-- 使用Thymeleaf表达式将后台传递的Base64字符串设置为...
recommend-type

Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式

然后,我们定义了一些辅助函数,如`save_model`用于保存模型到CPU可读取的格式,以及`showimg`用于展示生成的图像。 接下来,我们加载MNIST数据集。MNIST是一个包含60,000个训练样本和10,000个测试样本的标准化手写...
recommend-type

数学建模学习资料 姜启源数学模型课件 M04 数学规划模型 共85页.pptx

数学建模学习资料 姜启源数学模型课件 M04 数学规划模型 共85页.pptx
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自