def crossentropy_loss(x_true,x_pred): pred_items = tf.reshape(x_pred[:,:n_notes*n_durations],[tf.shape(x_pred)[0],n_notes,n_durations]) true_items = tf.reshape(x_true[:,:n_notes*n_durations],[tf.shape(x_pred)[0],n_notes,n_durations])#bz,n_notes,n_durations items_loss = categorical_crossentropy(true_items,pred_items,True,axis=-1)#bz,n_notes items_weights = tf.gather(durations_weights,tf.argmax(true_items,axis=-1),axis=0)#bz,n_notes items_loss = tf.reduce_mean(items_loss * items_weights,axis=1)#bz pred_offsets = x_pred[:,-n_offsets:] true_offsets = x_true[:,-n_offsets:] offset_loss = categorical_crossentropy(true_offsets,pred_offsets,True,axis=-1)#bz loss = items_loss + offset_loss return tf.reduce_mean(loss)

时间: 2024-03-26 13:37:54 浏览: 18
这段代码定义了一个名为crossentropy_loss()的函数,用于计算模型的交叉熵损失。该函数接受两个参数,x_true和x_pred,分别表示真实标签和模型预测结果。具体来说,该函数首先通过tf.reshape()函数将预测结果和真实标签转换为三维矩阵形式,其中第一维表示批次大小,第二维表示音符个数,第三维表示持续时间个数。接着,通过categorical_crossentropy()函数计算音符和持续时间的交叉熵损失。在计算音符损失时,该函数还利用了一个名为durations_weights的数组,它包含了所有持续时间类型的权重,用于对不同类型的持续时间进行加权。最后,该函数将音符和偏移量的损失相加,得到模型的总损失。
相关问题

# 8.模型训练 for epoch in range(config.epochs_gru): gru.train() running_loss = 0 train_bar = tqdm(train_loader) # 形成进度条,了解当前模型的训练进度 for data in train_bar: x_train, y_train = data # 解包迭代器中的X和Y optimizer.zero_grad() y_train_pred = gru(x_train) loss = loss_function(y_train_pred, y_train.reshape(-1, 1)) loss.backward() optimizer.step() running_loss += loss.item() train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1, config.epochs_gru, loss) # 模型验证 gru.eval() test_loss = 0 with torch.no_grad(): test_bar = tqdm(test_loader) for data in test_bar: x_test, y_test = data y_test_pred = gru(x_test) test_loss = loss_function(y_test_pred, y_test.reshape(-1, 1)) if test_loss < config.best_loss: config.best_loss = test_loss torch.save(model.state_dict(), save_path) print('Finished Training')按句解释这一段代码的意思,每句话有什么作用,实现了什么功能?

这段代码是使用GRU模型进行训练和验证,并保存最好的模型。具体解释如下: 1. `for epoch in range(config.epochs_gru):`:对于指定的训练轮数,进行循环训练。 2. `gru.train()`: 将模型设置为训练状态。 3. `running_loss = 0`: 初始化损失。 4. `train_bar = tqdm(train_loader)`: 创建一个显示训练进度的进度条。 5. `for data in train_bar: x_train, y_train = data`: 迭代训练集中的数据,将输入数据和标签分别赋值给 x_train 和 y_train。 6. `optimizer.zero_grad()`: 将优化器梯度清零。 7. `y_train_pred = gru(x_train)`: 使用 GRU 模型对输入数据进行预测。 8. `loss = loss_function(y_train_pred, y_train.reshape(-1, 1))`: 计算损失。 9. `loss.backward()`: 反向传播,计算梯度。 10. `optimizer.step()`: 更新模型参数。 11. `running_loss += loss.item()`: 累加损失。 12. `train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1, config.epochs_gru, loss)`: 更新训练进度条上的描述信息。 13. `gru.eval()`: 将模型设置为评估状态。 14. `test_loss = 0`: 初始化验证损失。 15. `with torch.no_grad():`: 关闭梯度计算,以节省内存。 16. `test_bar = tqdm(test_loader)`: 创建一个显示验证进度的进度条。 17. `for data in test_bar: x_test, y_test = data`: 迭代验证集中的数据,将输入数据和标签分别赋值给 x_test 和 y_test。 18. `y_test_pred = gru(x_test)`: 使用 GRU 模型对输入数据进行预测。 19. `test_loss = loss_function(y_test_pred, y_test.reshape(-1, 1))`: 计算验证损失。 20. `if test_loss < config.best_loss: config.best_loss = test_loss torch.save(model.state_dict(), save_path)`: 如果当前的验证损失比之前的最佳验证损失还小,则更新最佳验证损失,并保存模型参数。 21. `print('Finished Training')`: 训练结束,输出提示信息。

# 训练 def train_crack_captcha_cnn(): output = crack_captcha_cnn() # loss #loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=output, labels=Y)) loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=output, labels=Y)) # 最后一层用来分类的softmax和sigmoid有什么不同? # optimizer 为了加快训练 learning_rate应该开始大,然后慢慢衰 optimizer = tf.train.AdamOptimizer(learning_rate=0.002).minimize(loss) predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]) max_idx_p = tf.argmax(predict, 2) max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2) correct_pred = tf.equal(max_idx_p, max_idx_l) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) step = 0 while True: batch_x, batch_y = get_next_batch(64) _, loss_ = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75, train_phase:True}) print(step, loss_) # 每100 step计算一次准确率 if step % 100 == 0 and step != 0: batch_x_test, batch_y_test = get_next_batch(100) acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1., train_phase:False}) print(f"第{step}步,训练准确率为:{acc:.4f}") # 如果准确率大60%,保存模型,完成训练 if acc > 0.6: saver.save(sess, "crack_capcha.model", global_step=step) break step += 1 怎么没有输出结果

这段代码是一个用 CNN 模型来破解验证码的训练函数。其中,loss 函数使用的是 sigmoid_cross_entropy_with_logits,这是因为验证码每个字符只有一个正确的标签,而不是像分类问题那样多个标签,所以使用 sigmoid 函数更为合适。softmax 函数主要应用在多分类问题中。在代码中,optimizer 使用的是 Adam 优化器,learning_rate 初始值为 0.002,且会随着训练的进行而逐渐衰减。在训练过程中,每 100 步计算一次准确率,并在准确率大于 0.6 时保存模型并结束训练。至于为什么没有输出结果,可能是因为你没有调用 train_crack_captcha_cnn() 函数。

相关推荐

import numpy import numpy as np import matplotlib.pyplot as plt import math import torch from torch import nn from torch.utils.data import DataLoader, Dataset import os os.environ['KMP_DUPLICATE_LIB_OK']='True' dataset = [] for data in np.arange(0, 3, .01): data = math.sin(data * math.pi) dataset.append(data) dataset = np.array(dataset) dataset = dataset.astype('float32') max_value = np.max(dataset) min_value = np.min(dataset) scalar = max_value - min_value print(scalar) dataset = list(map(lambda x: x / scalar, dataset)) def create_dataset(dataset, look_back=3): dataX, dataY = [], [] for i in range(len(dataset) - look_back): a = dataset[i:(i + look_back)] dataX.append(a) dataY.append(dataset[i + look_back]) return np.array(dataX), np.array(dataY) data_X, data_Y = create_dataset(dataset) train_X, train_Y = data_X[:int(0.8 * len(data_X))], data_Y[:int(0.8 * len(data_Y))] test_X, test_Y = data_Y[int(0.8 * len(data_X)):], data_Y[int(0.8 * len(data_Y)):] train_X = train_X.reshape(-1, 1, 3).astype('float32') train_Y = train_Y.reshape(-1, 1, 3).astype('float32') test_X = test_X.reshape(-1, 1, 3).astype('float32') train_X = torch.from_numpy(train_X) train_Y = torch.from_numpy(train_Y) test_X = torch.from_numpy(test_X) class RNN(nn.Module): def __init__(self, input_size, hidden_size, output_size=1, num_layer=2): super(RNN, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layer = num_layer self.rnn = nn.RNN(input_size, hidden_size, batch_first=True) self.linear = nn.Linear(hidden_size, output_size) def forward(self, x): out, h = self.rnn(x) out = self.linear(out[0]) return out net = RNN(3, 20) criterion = nn.MSELoss(reduction='mean') optimizer = torch.optim.Adam(net.parameters(), lr=1e-2) train_loss = [] test_loss = [] for e in range(1000): pred = net(train_X) loss = criterion(pred, train_Y) optimizer.zero_grad() # 反向传播 loss.backward() optimizer.step() if (e + 1) % 100 == 0: print('Epoch:{},loss:{:.10f}'.format(e + 1, loss.data.item())) train_loss.append(loss.item()) plt.plot(train_loss, label='train_loss') plt.legend() plt.show()请适当修改代码,并写出预测值和真实值的代码

import numpy as np import matplotlib.pyplot as plt import math import torch from torch import nn import pdb from torch.autograd import Variable import os os.environ['KMP_DUPLICATE_LIB_OK']='True' dataset = [] for data in np.arange(0, 3, .01): data = math.sin(data * math.pi) dataset.append(data) dataset = np.array(dataset) dataset = dataset.astype('float32') max_value = np.max(dataset) min_value = np.min(dataset) scalar = max_value - min_value dataset = list(map(lambda x: x / scalar, dataset)) def create_dataset(dataset, look_back=3): dataX, dataY = [], [] for i in range(len(dataset) - look_back): a = dataset[i:(i + look_back)] dataX.append(a) dataY.append(dataset[i + look_back]) return np.array(dataX), np.array(dataY) data_X, data_Y = create_dataset(dataset) # 对训练集测试集划分,划分比例0.8 train_X, train_Y = data_X[:int(0.8 * len(data_X))], data_Y[:int(0.8 * len(data_Y))] test_X, test_Y = data_Y[int(0.8 * len(data_X)):], data_Y[int(0.8 * len(data_Y)):] train_X = train_X.reshape(-1, 1, 3).astype('float32') train_Y = train_Y.reshape(-1, 1, 3).astype('float32') test_X = test_X.reshape(-1, 1, 3).astype('float32') class RNN(nn.Module): def __init__(self, input_size, hidden_size, output_size=1, num_layer=2): super(RNN, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layer = num_layer self.rnn = nn.RNN(input_size, hidden_size, batch_first=True) self.linear = nn.Linear(hidden_size, output_size) def forward(self, x): # 补充forward函数 out, h = self.rnn(x) out = self.linear(out[0]) # print("output的形状", out.shape) return out net = RNN(3, 20) criterion = nn.MSELoss(reduction='mean') optimizer = torch.optim.Adam(net.parameters(), lr=1e-2) train_loss = [] test_loss = [] for e in range(1000): pred = net(train_X) loss = criterion(pred, train_Y) optimizer.zero_grad() # 反向传播 loss.backward() optimizer.step() if (e + 1) % 100 == 0: print('Epoch:{},loss:{:.10f}'.format(e + 1, loss.data.item())) train_loss.append(loss.item()) plt.plot(train_loss, label='train_loss') plt.legend() plt.show()画出预测值真实值图

import os import random import numpy as np import cv2 import keras from create_unet import create_model img_path = 'data_enh/img' mask_path = 'data_enh/mask' # 训练集与测试集的切分 img_files = np.array(os.listdir(img_path)) data_num = len(img_files) train_num = int(data_num * 0.8) train_ind = random.sample(range(data_num), train_num) test_ind = list(set(range(data_num)) - set(train_ind)) train_ind = np.array(train_ind) test_ind = np.array(test_ind) train_img = img_files[train_ind] # 训练的数据 test_img = img_files[test_ind] # 测试的数据 def get_mask_name(img_name): mask = [] for i in img_name: mask_name = i.replace('.jpg', '.png') mask.append(mask_name) return np.array(mask) train_mask = get_mask_name(train_img) test_msak = get_mask_name(test_img) def generator(img, mask, batch_size): num = len(img) while True: IMG = [] MASK = [] for i in range(batch_size): index = np.random.choice(num) img_name = img[index] mask_name = mask[index] img_temp = os.path.join(img_path, img_name) mask_temp = os.path.join(mask_path, mask_name) temp_img = cv2.imread(img_temp) temp_mask = cv2.imread(mask_temp, 0)/255 temp_mask = np.reshape(temp_mask, [256, 256, 1]) IMG.append(temp_img) MASK.append(temp_mask) IMG = np.array(IMG) MASK = np.array(MASK) yield IMG, MASK # train_data = generator(train_img, train_mask, 32) # temp_data = train_data.__next__() # 计算dice系数 def dice_coef(y_true, y_pred): y_true_f = keras.backend.flatten(y_true) y_pred_f = keras.backend.flatten(y_pred) intersection = keras.backend.sum(y_true_f * y_pred_f) area_true = keras.backend.sum(y_true_f * y_true_f) area_pred = keras.backend.sum(y_pred_f * y_pred_f) dice = (2 * intersection + 1)/(area_true + area_pred + 1) return dice # 自定义损失函数,dice_loss def dice_coef_loss(y_true, y_pred): return 1 - dice_coef(y_true, y_pred) # 模型的创建 model = create_model() # 模型的编译 model.compile(optimizer='Adam', loss=dice_coef_loss, metrics=[dice_coef]) # 模型的训练 history = model.fit_generator(generator(train_img, train_mask, 4), steps_per_epoch=100, epochs=10, validation_data=generator(test_img, test_msak, 4), validation_steps=4 ) # 模型的保存 model.save('unet_model.h5') # 模型的读取 model = keras.models.load_model('unet_model.h5', custom_objects={'dice_coef_loss': dice_coef_loss, 'dice_coef': dice_coef}) # 获取测试数据 test_generator = generator(test_img, test_msak, 32) img, mask = test_generator.__next__() # 模型的测试 model.evaluate(img, mask) # [0.11458712816238403, 0.885412871837616] 94%

import pandas as pd import numpy as np from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import Dense, LSTM import matplotlib.pyplot as plt # 读取CSV文件 data = pd.read_csv('77.csv', header=None) # 将数据集划分为训练集和测试集 train_size = int(len(data) * 0.7) train_data = data.iloc[:train_size, 1:2].values.reshape(-1,1) test_data = data.iloc[train_size:, 1:2].values.reshape(-1,1) # 对数据进行归一化处理 scaler = MinMaxScaler(feature_range=(0, 1)) train_data = scaler.fit_transform(train_data) test_data = scaler.transform(test_data) # 构建训练集和测试集 def create_dataset(dataset, look_back=1): X, Y = [], [] for i in range(len(dataset) - look_back): X.append(dataset[i:(i+look_back), 0]) Y.append(dataset[i+look_back, 0]) return np.array(X), np.array(Y) look_back = 3 X_train, Y_train = create_dataset(train_data, look_back) X_test, Y_test = create_dataset(test_data, look_back) # 转换为LSTM所需的输入格式 X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) # 构建LSTM模型 model = Sequential() model.add(LSTM(units=50, return_sequences=True, input_shape=(look_back, 1))) model.add(LSTM(units=50)) model.add(Dense(units=1)) model.compile(optimizer='adam', loss='mean_squared_error') model.fit(X_train, Y_train, epochs=100, batch_size=32) # 预测测试集并进行反归一化处理 Y_pred = model.predict(X_test) Y_pred = scaler.inverse_transform(Y_pred) Y_test = scaler.inverse_transform(Y_test) # 输出RMSE指标 rmse = np.sqrt(np.mean((Y_pred - Y_test)**2)) print('RMSE:', rmse) # 绘制训练集真实值和预测值图表 train_predict = model.predict(X_train) train_predict = scaler.inverse_transform(train_predict) train_actual = scaler.inverse_transform(Y_train.reshape(-1, 1)) plt.plot(train_actual, label='Actual') plt.plot(train_predict, label='Predicted') plt.title('Training Set') plt.xlabel('Time (h)') plt.ylabel('kWh') plt.legend() plt.show() # 绘制测试集真实值和预测值图表 plt.plot(Y_test, label='Actual') plt.plot(Y_pred, label='Predicted') plt.title('Testing Set') plt.xlabel('Time (h)') plt.ylabel('kWh') plt.legend() plt.show()以上代码运行时报错,错误为ValueError: Expected 2D array, got 1D array instead: array=[-0.04967795 0.09031832 0.07590125]. Reshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.如何进行修改

最新推荐

recommend-type

计算机专业毕业设计范例845篇jsp2118基于Web停车场管理系统的设计与实现_Servlet_MySql演示录像.rar

博主给大家详细整理了计算机毕业设计最新项目,对项目有任何疑问(部署跟文档),都可以问博主哦~ 一、JavaWeb管理系统毕设项目【计算机毕设选题】计算机毕业设计选题,500个热门选题推荐,更多作品展示 计算机毕业设计|PHP毕业设计|JSP毕业程序设计|Android毕业设计|Python设计论文|微信小程序设计
recommend-type

Windows 10 平台 FFmpeg 开发环境搭建 博客资源

【FFmpeg】Windows 10 平台 FFmpeg 开发环境搭建 ④ ( FFmpeg 开发库内容说明 | 创建并配置 FFmpeg 项目 | 拷贝 DLL 动态库到 SysWOW64 目录 ) https://hanshuliang.blog.csdn.net/article/details/139172564 博客资源 一、FFmpeg 开发库 1、FFmpeg 开发库编译 2、FFmpeg 开发库内容说明 二、创建并配置 FFmpeg 项目 1、拷贝 dll 动态库到 C:\Windows\SysWOW64 目录 - 必须操作 特别关注 2、创建 Qt 项目 - C 语言程序 3、配置 FFmpeg 开发库 - C 语言项目 4、创建并配置 FFmpeg 开发库 - C++ 项目
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MySQL数据库性能提升秘籍:揭秘性能下降幕后真凶及解决策略

![MySQL数据库性能提升秘籍:揭秘性能下降幕后真凶及解决策略](http://xiaoyuge.work/explain-sql/index/2.png) # 1. MySQL数据库性能优化概述** MySQL数据库性能优化是一项至关重要的任务,可以显著提高应用程序的响应时间和整体用户体验。优化涉及识别和解决影响数据库性能的因素,包括硬件资源瓶颈、软件配置不当和数据库设计缺陷。通过采取适当的优化策略,可以显著提升数据库性能,满足业务需求并提高用户满意度。 # 2. MySQL数据库性能下降的幕后真凶 ### 2.1 硬件资源瓶颈 #### 2.1.1 CPU利用率过高 **症状:
recommend-type

如何在unity创建按钮

在 Unity 中创建按钮的步骤如下: 1. 在 Unity 中创建一个 UI Canvas,选择 GameObject -> UI -> Canvas。 2. 在 Canvas 中创建一个按钮,选择 GameObject -> UI -> Button。 3. 在场景视图中调整按钮的位置和大小。 4. 在 Inspector 中设置按钮的文本、颜色、字体等属性。 5. 添加按钮的响应事件,选择按钮,在 Inspector 的 On Click () 中添加相应的方法。 这样就可以创建一个按钮了,你可以在游戏中使用它来触发相应的操作。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

表锁问题全解析,深度解读MySQL表锁问题及解决方案

![表锁问题全解析,深度解读MySQL表锁问题及解决方案](https://img-blog.csdnimg.cn/img_convert/a89711a10f6b856a777a9eed389c5112.png) # 1. 表锁基础** 表锁是一种数据库并发控制机制,用于防止多个事务同时访问和修改同一行或表中的数据,从而保证数据的完整性和一致性。表锁通过对表或表中的特定行施加锁来实现,以确保在事务完成之前,其他事务不能对这些数据进行修改。 表锁分为两种主要类型:共享锁(S锁)和排他锁(X锁)。共享锁允许多个事务同时读取同一行或表中的数据,但不能修改。排他锁则允许一个事务独占地访问和修改同
recommend-type

电脑上怎么获取文件路径

在 Windows 操作系统中,你可以按住 Shift 键并右键单击文件或文件夹,然后选择“复制为路径”选项,该选项会将文件或文件夹的路径复制到剪贴板中。你也可以直接打开文件或文件夹所在的目录,然后在地址栏中复制路径。在 Mac 操作系统中,你可以在 Finder 中选中文件或文件夹,然后从菜单栏中选择“文件”->“获取信息”,在弹出的窗口中可以找到文件或文件夹的路径。