def crossentropy_loss(x_true,x_pred): pred_items = tf.reshape(x_pred[:,:n_notes*n_durations],[tf.shape(x_pred)[0],n_notes,n_durations]) true_items = tf.reshape(x_true[:,:n_notes*n_durations],[tf.shape(x_pred)[0],n_notes,n_durations])#bz,n_notes,n_durations items_loss = categorical_crossentropy(true_items,pred_items,True,axis=-1)#bz,n_notes items_weights = tf.gather(durations_weights,tf.argmax(true_items,axis=-1),axis=0)#bz,n_notes items_loss = tf.reduce_mean(items_loss * items_weights,axis=1)#bz pred_offsets = x_pred[:,-n_offsets:] true_offsets = x_true[:,-n_offsets:] offset_loss = categorical_crossentropy(true_offsets,pred_offsets,True,axis=-1)#bz loss = items_loss + offset_loss return tf.reduce_mean(loss)
时间: 2024-03-26 16:37:54 浏览: 114
这段代码定义了一个名为crossentropy_loss()的函数,用于计算模型的交叉熵损失。该函数接受两个参数,x_true和x_pred,分别表示真实标签和模型预测结果。具体来说,该函数首先通过tf.reshape()函数将预测结果和真实标签转换为三维矩阵形式,其中第一维表示批次大小,第二维表示音符个数,第三维表示持续时间个数。接着,通过categorical_crossentropy()函数计算音符和持续时间的交叉熵损失。在计算音符损失时,该函数还利用了一个名为durations_weights的数组,它包含了所有持续时间类型的权重,用于对不同类型的持续时间进行加权。最后,该函数将音符和偏移量的损失相加,得到模型的总损失。
相关问题
# 训练 def train_crack_captcha_cnn(): output = crack_captcha_cnn() # loss #loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=output, labels=Y)) loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=output, labels=Y)) # 最后一层用来分类的softmax和sigmoid有什么不同? # optimizer 为了加快训练 learning_rate应该开始大,然后慢慢衰 optimizer = tf.train.AdamOptimizer(learning_rate=0.002).minimize(loss) predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]) max_idx_p = tf.argmax(predict, 2) max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2) correct_pred = tf.equal(max_idx_p, max_idx_l) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) step = 0 while True: batch_x, batch_y = get_next_batch(64) _, loss_ = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75, train_phase:True}) print(step, loss_) # 每100 step计算一次准确率 if step % 100 == 0 and step != 0: batch_x_test, batch_y_test = get_next_batch(100) acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1., train_phase:False}) print(f"第{step}步,训练准确率为:{acc:.4f}") # 如果准确率大60%,保存模型,完成训练 if acc > 0.6: saver.save(sess, "crack_capcha.model", global_step=step) break step += 1 怎么没有输出结果
这段代码是一个用 CNN 模型来破解验证码的训练函数。其中,loss 函数使用的是 sigmoid_cross_entropy_with_logits,这是因为验证码每个字符只有一个正确的标签,而不是像分类问题那样多个标签,所以使用 sigmoid 函数更为合适。softmax 函数主要应用在多分类问题中。在代码中,optimizer 使用的是 Adam 优化器,learning_rate 初始值为 0.002,且会随着训练的进行而逐渐衰减。在训练过程中,每 100 步计算一次准确率,并在准确率大于 0.6 时保存模型并结束训练。至于为什么没有输出结果,可能是因为你没有调用 train_crack_captcha_cnn() 函数。
解释代码:class VLCELoss(nn.Layer): def __init__(self, smoothing=False, with_all=False, ignore_index=-1, **kwargs): super(VLCELoss, self).__init__() if ignore_index >= 0: self.loss_func = nn.CrossEntropyLoss( reduction='mean', ignore_index=ignore_index) else: self.loss_func = nn.CrossEntropyLoss(reduction='mean') # ignore_index默认值-100 self.smoothing = smoothing self.with_all = with_all def forward(self, pred, batch): if isinstance(pred, dict): # for ABINet loss = {} loss_sum = [] # 损失列表 for name, logits in pred.items(): # items:一个类似集合的对象,提供pred的项的视图 if isinstance(logits, list): logit_num = len(logits) all_tgt = paddle.concat([batch[1]] * logit_num, 0) all_logits = paddle.concat(logits, 0) flt_logtis = all_logits.reshape([-1, all_logits.shape[2]]) flt_tgt = all_tgt.reshape([-1]) else: flt_logtis = logits.reshape([-1, logits.shape[2]]) flt_tgt = batch[1].reshape([-1]) loss[name + '_loss'] = self.loss_func(flt_logtis, flt_tgt) loss_sum.append(loss[name + '_loss']) loss['loss'] = sum(loss_sum) return loss
很抱歉,我作为语言模型无法提供完整的代码实现,但是我可以给你一个概括性的方案来解决这个问题。
对于网约车和顾客的定位数据,我们可以使用同态加密算法,将其加密后保存在文件中。同态加密算法是一种特殊的加密技术,它可以在不解密的情况下对加密数据进行计算,这样就可以保证数据的隐私安全。
以下是一个基本的同态加密算法的过程:
1.生成公钥和私钥
2.将所有的定位数据转化为数字,并将其保存在txt文件中
3.使用公钥对txt文件中的数据进行加密
4.将加密后的数据保存在同路径目录下的新文件中,重命名为另一个txt文件
5.使用私钥对加密后的数据进行解密
6.使用同态加密算法对解密后的数据进行计算
7.将计算结果保存在txt文件中
以下是一个用Python实现同态加密算法的伪代码:
```python
# 导入同态加密算法库
import tenSEAL
# 生成公钥和私钥
public_key, secret_key = tenSEAL.generate_keys()
# 打开定位数据txt文件
with open('location_data.txt', 'r') as f:
# 读取定位数据
location_data = f.readlines()
# 将定位数据转化为数字
encrypted_data = []
for data in location_data:
encrypted_data.append(public_key.encrypt(int(data)))
# 保存加密后的数据到新文件
with open('encrypted_location_data.txt', 'w') as f:
for data in encrypted_data:
f.write(str(data) + '\n')
# 解密加密后的数据
decrypted_data = []
for data in encrypted_data:
decrypted_data.append(secret_key.decrypt(data))
# 使用同态加密算法对解密后的数据进行计算
result = 0
for data in decrypted_data:
result += data
# 将计算结果保存在新文件
with open('result.txt', 'w') as f:
f.write(str(result))
```
需要注意的是,这只是一个简单的同态加密算法的伪代码,实际实现过程中需要考虑更多的安全性和性能问题。
阅读全文