model.add(LSTM(units=64, input_shape=(X_train.shape[1], X_train.shape[2])))是什么意思
时间: 2024-04-25 09:25:56 浏览: 315
.ipynb_checkpoints_.ipynb_checkpoints_RNN_
这行代码的意思是,在模型中添加一个 LSTM 层,该层包含 64 个 LSTM 单元,并且输入序列的形状为 (X_train.shape[1], X_train.shape[2])。
具体而言,X_train 是由多组长度为 seq_length 的 "china_cpi" 和 "us_cpi" 数据组成的序列,因此 X_train.shape[1] 表示序列的长度,X_train.shape[2] 表示每个元素中包含的特征数量,即这里的 "china_cpi" 和 "us_cpi" 两列数据。因此,input_shape=(X_train.shape[1], X_train.shape[2]) 表示输入序列形状为 (seq_length, 特征数量)。
LSTM 层是一种循环神经网络层,能够有效地捕捉输入序列中的时间依赖关系。64 个 LSTM 单元表示该层中包含 64 个 LSTM 细胞,每个细胞都有自己的状态和权重参数。这些参数在训练过程中会被优化,以便在输入序列上进行有效的特征提取和预测。
在模型中添加 LSTM 层后,我们可以继续添加其他类型的层,如 Dense 层或其他类型的循环神经网络层,以构建一个完整的深度学习模型。
阅读全文