model = Sequential() # 顺序模型 # 参数说明: # units: 输出空间的维度 # input_shape: (timestep, input_dim),timestep可以设置为None,由输入决定,input_dime根据具体情况 # activation: 激活函数,默认tanh # return_sequences: 布尔值。是否返回最后的输出。在输出序列或完整序列中。 model.add(LSTM(256, input_shape=(X_train.shape[1], X_train.shape[2]), return_sequences=True)) model.add(Dropout(0.4)) # 抛弃一些参数防止过拟合,X可以取0--1之间,代表百分比抛弃数据 model.add(LSTM(256, return_sequences=True)) model.add(Dropout(0.3)) model.add(LSTM(128, return_sequences=True)) model.add(LSTM(32, return_sequences=True))
时间: 2024-02-26 10:54:34 浏览: 108
pytorch中获取模型input/output shape实例
5星 · 资源好评率100%
这是一个使用Keras库实现的LSTM模型,该模型包含四个LSTM层和三个Dropout层。其中,LSTM层的输出空间维度为256、256、128和32,输入形状为(timestep, input_dim),其中timestep可以设置为None,根据输入数据自动确定,input_dim则根据具体情况确定。Dropout层用于防止过拟合,第一个Dropout层抛弃了40%的参数,第二个和第三个Dropout层分别抛弃了30%的参数。由于所有LSTM层的return_sequences参数均设置为True,因此该模型会返回完整的输出序列。
阅读全文